簡易檢索 / 詳目顯示

研究生: 熊謙峰
Hsiung, Chien-Feng
論文名稱: 無人飛行載具之導航系統設計
Navigation and Guidance System Design for Unmanned Aerial Vehicle
指導教授: 詹劭勳
Jan, Shau-Shiun
何慶雄
Ho, Ching-Shun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 80
中文關鍵詞: 卡爾曼濾波器無人飛行載具全球衛星定位系統慣性量測元件
外文關鍵詞: Kalman filter, unmanned aerial vehicle (UAV), GPS, IMU
相關次數: 點閱:127下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文著重於無人飛行載具(Unmanned Aerial Vehicle, UAV)之導航與導引系統設計。在這個研究中無人飛行載具是使用90級遙控直升機加以改裝而成,基於遙控直升機之系統動態為非線性模型,因此導航與導引系統設計比起傳統定翼無人飛行載具也有較高的要求。

    一般而言全球衛星定位系統(Global Positioning System, GPS)提供了使用者位置、速度以及時間等資訊。而慣性量測元件(Inertial Measurement Unit, IMU)提供使用者加速度與角速度等資訊,如果再將慣性量測系統之輸出配合導航方程式之計算那麼將能提供使用者速度與位置之資訊,並可稱做慣性導航系統。這兩個導航系統對於無人飛行載具皆有其存在的必要性,同時各自擁有其優缺點,藉由整合這兩個主要的導航系統可以達到互補之作用同時增進導航與導引系統之效能。

    這篇論文的研究在於設計一導航與導引系統提供無人飛行直升機使用。本文中藉由擴展式卡爾曼濾波器(Extended Kalman Filter, EKF)將微機電技術製造之慣性量測元件與全球衛星定位系統利用鬆散式整合來達到導航與導引系統設計之目標。此一系統提供比慣性量測元件與全球衛星定位系統個別獨立運作更高的效能同時也能在不同的無人載具上做應用。

    This paper will focus on the design of navigation and guidance system of an UAV which is based on a Raptor 90 RC helicopter for auto hovering and target tracking mission. Considering the nonlinear model of a RC helicopter, its navigation and guidance system will be higher bandwidth than that of a fix-wing airplane to meet the requirements.

    Global Positioning System (GPS) is a position fixing system, basically provide user navigation solutions; a GPS receiver can provide vehicle position, velocity and time. And a strapdown inertial measurement unit (IMU) can provide acceleration and angular rate, these measurements with navigation equations can provide user position and velocity which is called inertial navigation system (INS) and it’s a dead reckoning system. Typically, each system has its disadvantages ,and by integrating GPS and IMU we can get the advantages from both systems to gain the improvement in navigation and guidance performance.

    The contribution of this research is the design of a navigation and guidance system for unmanned aerial helicopter (UAH) which uses a loosely-coupled architecture to integrate a Micro-Electro-Micro-Systems (MEMS) IMU and GPS with an Extended Kalman Filter (EKF). Under this architecture, the navigation and guidance system can provide better performance than GPS or IMU works alone. It can be used for other kinds of unmanned vehicles like ground vehicle or airplane.

    LIST OF TABLES I LIST OF FIGURES II CHAPTER1: INTRODUCTION AND OVERVIEW 1 1.1 INTRODUCTION 1 1.2 OVERVIEW 1 1.2.1 UAH OVERVIEW 1 1.2.2 NAVIGATION AND GUIDANCE SYSTEM OVERVIEW 2 1.3 INTRODUCTION TO GPS 4 1.4 INTRODUCTION TO IMU/AHRS/INS 6 1.5 INTRODUCTION TO COORDINATES (FRAME) 11 1.6 CONCLUSION 15 CHAPTER2: SYSTEM ARCHITECTURE 16 2.1 INTRODUCTION 16 2.2 HARDWARE ARCHITECTURE 16 2.2.1 GPS RECEIVER 17 2.2.2 IMU/AHRS/INS 18 2.3 DATA MEASUREMENTS 21 2.3.1 DATA STRUCTURE 21 2.3.2 DATA PROCESSING 24 2.4 CONCLUSION 26 CHAPTER3: METHODS AND ALGORITHMS 28 3.1 INTRODUCTION 28 3.2 REAL-TIME KINEMATIC (RTK) 28 3.3 NAVIGATION EQUATIONS 34 3.4 KALMAN FILTER 42 3.5 CONCLUSION 51 CHAPTER4: EXPERIMENTAL RESULTS 53 4.1 INTRODUCTION 53 4.2 SYSTEM STATIC TEST 53 4.3 ZERO VELOCITY UPDATE (ZVU) 60 4.4 SYSTEM DYNAMIC TEST – STAND ALONE GPS/INS 64 4.5 SYSTEM DYNAMIC TEST – GPS WITH RTK ASSISTANCE/INS 67 4.6 FLIGHT TEST 69 4.7 CONCLUSION 73 CHAPTER5: CONCLUSION AND FUTURE WORKS 75 5.1 CONCLUSION 75 5.2 FUTURE WORKS 77 BIBLIOGRAPHY 78 BIOGRAPHY 80

    [1] Andrew Richard Conway, “Autonomous Control of an Unstable Model Helicopter Using Carrier Phase GPS Only,” Ph. D. Thesis, Stanford, 1995.
    [2] Arthur Gelb, Applied Optimal Estimation, 1974.
    [3] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice using MATLAB second edition, 2001.
    [4] Pratap Misra and Per Enge, Global Positioning System-Signals, Measurements, and Performance second Edition, 2006.
    [5] Myron Kayton and Walter R. Fried, Avionics Navigation Systems second edition, 1997.
    [6] “Unmanned Aerial Vehicle (UAV) Roadmap 2002,” Office of the Secretary of Defense, Dec., 2002.
    [7] Alison A. Proctor, Bryan Gwin, Suresh K. Kannan, Adrian A. Koller, Henrik B. Christophersen and Eric N. Johnson, “Ongoing Development of an Autonomous Aerial Reconnaissance System at Georgia Tech,” 2004.
    [8] U.S. Coast Guard Navigation Center, http://www.navcen.uscg.gov/
    [9] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, 1997.
    [10] M. S. Grewal, L. R. Weill and A. P. Andrews, Global Positioning Systems, Inertial Navigation, and Integration, 2001.
    [11] Chiang, Kai-Wei, Inertial Surveying and INS/GPS Integration Lecture Notes, 2007.
    [12] James Bao-Yen Tsui, Fundamentals of Global Positioning System Receivers second edition, 2005.
    [13] OEM4 Family of Receivers User Manual – Installation and Operation, NovAtel, Incorporated, 21 June. 2001.
    [14] AHRS400 Series User’s Manual, Revision C, Feb. 2007.
    [15] Jan, Shau-Shiun, Navigation and Guidance Systems Lecture Notes, 2006.
    [16] 蔣宏仁,"DGPS輔助慣性導航分散式濾波之設計與驗證",碩士論文,國立成功大學,1997。
    [17] Christopher Mather, Paul Groves and Mark Carter, “A Man Motion Navigation System Using High Sensitivity GPS, MEMS IMU and Auxiliary Sensors,” ION GNSS 2006, Fort Worth, Texas.
    [18] 莊智清、黃國興,電子導航,2001。
    [19] Leen Vander Kuylen, Frank Boon and Andrew Simsky, “Attitude Determination Methods Used in the PolaRx2@ Multi-antenna GPS Receiver,” ION GNSS 2005, Long Beach, California.

    下載圖示 校內:2009-06-26公開
    校外:2010-06-26公開
    QR CODE