簡易檢索 / 詳目顯示

研究生: 梁家愷
Liang, Chia-Kai
論文名稱: 實驗制約水鐵礦於環境砷循環之角色
Experimental constraints of the role of ferrihydrite on the environmental arsenic cycling
指導教授: 楊懷仁
Yang, Huai-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 125
中文關鍵詞: 水鐵礦序列萃取共沉澱腐植質針鐵礦
外文關鍵詞: arsenic, ferrihydrite, sequential extraction procedures, co-precipitation, humic substances, goethite
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在地下水砷循環中,鐵(氫)氧化物的還原溶解是將砷釋入水體之重要機制,然而水鐵礦作為眾多鐵(氫)氧化物的前驅物,目前鮮有研究探討水鐵礦對砷循環的貢獻。本研究以共沉澱與吸附實驗,合成含砷水鐵礦,量化水鐵礦擷取水溶液中砷之能力,制約其於環境砷循環中的角色。
    合成的水鐵礦分為固定鐵濃度與降低鐵濃度組,固定鐵濃度組是先配製416 mL 砷濃度分別為0、0.125、0.625、1.25、6.25、12.5及62.5 mg/L並含26 g Fe(NO3)3·9H2O的溶液,取16 mL測量砷與鐵濃度,剩餘400 mL溶液利用pH-meter監測並加入約100 mL NaOH溶液,並控制混合後pH值範圍在7–8之間,沉澱前混合液砷濃度([As]i)分別0.1、0.5、1、5、10和50 mg/L。混合溶液放置24小時,水鐵礦沉澱後,經由冷凍乾燥處理成粉末。降低鐵濃度組實驗是減少水鐵礦沉澱前混合溶液中的鐵濃度,以評估其對水鐵礦擷取砷能力的影響,使固定鐵濃度組[As]i = 5 mg/L溶液中Fe(NO3)3·9H2O減少為12.5 g,而[As]i = 10 mg/L溶液中Fe(NO3)3·9H2O減少為5 g,使這兩個混合液之砷/鐵比值與[As]i = 10及50 mg/L的混合液一致。所有合成水鐵礦具有寬且低強度的二線水鐵礦XRD特徵峰。而沉澱後殘留溶液砷濃度低於Q-ICP-MS的偵測極限,代表水鐵礦具有極強的砷擷取能力。
    所有的水鐵礦沉澱依照本研究砷序列萃取進行分析並結合XRD結果進行判讀,其中,砷序列萃取以固/液比值(S/L) = 0.01與0.001進行,分別為0.1 及0.01 g水鐵礦與10 mL萃取液反應,以擬合不同水鐵礦含量的樣本進行砷序列萃取的結果。結果表明,(NH4)H2PO4溶液萃取水鐵礦吸附砷,鹽酸羥胺溶液無法萃取任何與鐵氧化物共沉澱砷,草酸溶液能夠全萃取水鐵礦共沉澱砷並且能溶解樣本中所有水鐵礦,而抗壞血酸溶液僅能萃取殘餘的針鐵礦及赤鐵礦共沉澱砷,且S/L = 0.01與S/L = 0.001兩組實驗各萃取步驟的砷與鐵回收率相近,顯示本研究使用的砷序列萃取對於分析含鐵(氫)氧化物樣本有極高的選擇性,且可用於不同水鐵礦含量的樣本。相較於S/L = 0.01,S/L = 0.001的在第一次草酸步驟,即可回收> 80% 水鐵礦共沉澱砷,表明僅需重複兩次草酸萃取即可回收目標砷。所有水鐵礦樣本經過序列萃取分析後確認了,共沉澱相砷/吸附相砷比值約為9–12,因此水鐵礦主要以共沉澱的方式擷取砷。而共沉澱砷與水鐵礦的砷/鐵比值與沉澱前系統的砷/鐵比值相近,表明系統中的砷與鐵濃度同時影響水鐵礦共沉澱砷。因此,利用本研究水鐵礦於砷序列萃取草酸萃取液的砷與鐵濃度,並結合實驗室對於針鐵礦的分析結果作圖,可用於推測鐵(氫)氧化物沉澱前系統的砷/鐵比值。
    為獲得腐植質對含砷水鐵礦的砷釋放潛能,進行了腐植質溶液與含砷水鐵礦反應的實驗,腐植質溶液有兩種,一是將2.5 g 腐植酸溶解在500 mL 0.1 M NaOH溶液中,配置成5 g/L 腐植酸溶液(鹼性,pH = 12)。另一個是將45 g由咖啡渣、蔬菜葉和果皮組成堆肥與450 mL去離子水混合並震盪48 h,使用藥材袋過濾後離心分離出上清液,以製成弱酸性(pH值約為5.2)的堆肥溶液。結果表明,含砷水鐵礦在鹼性環境中與OH-反應,釋放大量的吸附砷及共沉澱砷,然而腐植酸能夠與OH-競爭水鐵礦表面的點位,從而抑制砷的釋放。在弱酸性的環境中,腐植質能夠萃取含砷水鐵礦的共沉澱砷,但是萃取效率低,需要花費更長的時間或是更高的濃度,才能溶解水鐵礦並釋放砷。
    結合本實驗的結果與相關研究,對於水鐵礦於砷循環有以下認知,在三價鐵離子沉澱為水鐵礦的同時,能夠擷取大量砷,並藉由陰離子競爭釋放吸附相砷,水鐵礦的還原溶解釋放吸附相、共沉澱相砷與二價鐵離子,水鐵礦老化轉換成針鐵礦或赤鐵礦並釋放吸附相及共沉澱相砷,溶解的腐植質藉由羧酸基競爭吸附在水鐵礦表面上並釋放吸附砷,也可藉由陽離子橋聯的形成砷-鐵-腐植質錯合物並擷取砷,也能夠萃取水鐵礦共沉澱砷。

    In groundwater arsenic models, the reductive dissolution of iron (hydr)oxides serves as a source of arsenic. However, ferrihydrite, a precursor to many iron (hydr)oxides, is seldom studied for its contribution to the arsenic cycle. This study provides experimental data on arsenic co-precipitation with synthesized ferrihydrite, elucidating ferrihydrite's role in environmental arsenic cycling. Results indicate that ferrihydrite effectively removes arsenate (V) from the environment through adsorption and co-precipitation, with co-precipitated arsenic predominating over adsorbed arsenic. The arsenic sequential extraction procedure combined with XRD results indicates that the (NH4)H2PO4 solution extracted arsenic adsorbed on the surface of ferrihydrite, the NH2OH-HCl solution could not extract any arsenic or iron from arsenic-bearing ferrihydrite, the oxalic acid solution was able to fully extract co-precipitated arsenic from ferrihydrite and dissolve all ferrihydrite in the sample, and the ascorbic acid solution could only extract co-precipitated arsenic from residual goethite and hematite in the sample. This study demonstrates the high selectivity of the arsenic sequential extraction procedure for analyzing iron (hydr)oxide samples. Using arsenic and iron concentrations in oxalic acid extracts, models can predict arsenic/iron ratios in systems before iron (hydr)oxide precipitation. Finally, arsenic-bearing ferrihydrite reacts with OH- in alkaline environments, releasing adsorbed and co-precipitated arsenic, whereas humic acids compete with OH- on ferrihydrite surfaces, inhibiting arsenic release. In a weakly acidic environments, humic substances can extract co-precipitated arsenic from arsenic-bearing ferrihydrite, but with lower efficiency, requiring longer times or higher concentrations to dissolve ferrihydrite and release arsenic.

    摘要 I EXTENDED ABSTRACT III 致謝 VII 目錄 IX 表目錄 XI 圖目錄 XIII 第一章 序論 1 1.1環境砷危害及衍生問題 1 1.2 文獻分析 2 1.2.1 水鐵礦在環境砷循環中的作用 2 1.2.2 水鐵礦 3 1.2.3 腐植質對自然界砷的影響 5 1.2.4 砷序列萃取 8 1.3 研究目的 9 第二章 研究材料及方法 11 2.1 實驗流程 11 2.2 水鐵礦砷共沉澱實驗 13 2.2.1 固定鐵濃度水鐵礦砷共沉澱實驗 14 2.2.2 降低鐵濃度水鐵礦砷共沉澱實驗 15 2.2.3 含砷水鐵礦沉澱完全溶解實驗 16 2.3 砷序列萃取法分析 17 2.3.1 固定鐵濃度組水鐵礦沉澱之砷序列萃取 19 2.3.2 固定鐵濃度組水鐵礦沉澱之固/液比值0.001砷序列萃取 20 2.3.3 降低鐵濃度組水鐵礦沉澱之砷序列萃取 21 2.4 腐植質砷釋放實驗 22 2.5 感應耦合電漿質譜儀分析 23 2.7 X光粉末繞射分析 24 2.8 比表面積分析 24 3 第三章 結果 25 3.1 水鐵礦與砷共沉澱結果 25 3.1.1 XRD沉澱物分析 25 3.1.2 固定鐵濃度共沉澱前後溶液及沉澱物全溶結果 30 3.1.3 降低鐵濃度共沉澱前後溶液及沉澱物全溶結果 34 3.2 水鐵礦砷序列萃取結果 36 3.2.1 序列萃取後殘存礦物相XRD分析 36 3.2.2 初次萃取為MgCl2溶液及(NH4)2SO4溶液的水鐵礦砷序列萃取結果 38 3.2.3 固/液比值為0.001之水鐵礦砷序列萃取結果 52 3.2.4 降低鐵濃度水鐵礦沉澱之砷序列萃取結果 59 3.3 鐵氫氧化物之腐植質砷釋放結果 62 3.3.1 腐植酸溶液釋放水鐵礦吸收砷 62 3.3.2 低濃度堆肥溶液釋放水鐵礦吸收砷 65 3.3.3 腐植酸溶液釋放針鐵礦吸收砷 67 3.3.4 高濃度堆肥溶液釋放針鐵礦吸收砷 69 3.3.5 低濃度堆肥溶液釋放針鐵礦吸收砷 72 第四章 討論 75 4.1 砷序列萃取對水鐵礦樣本的選擇性 75 4.1.1 砷序列萃取用於水鐵礦之目標相與萃取液 75 4.1.2 砷序列萃取弱吸附相萃取液的選擇 77 4.1.3砷序列萃取固/液比值差異 79 4.1.4 砷序列萃取的再吸附效應 82 4.1.5 共沉澱砷/鐵比值應用 85 4.2 砷對水鐵礦結晶的影響 88 4.3 砷-水鐵礦共沉澱機制 91 4.3.1 合成水鐵礦之砷擷取量 91 4.4 腐植質與水鐵礦作用機制 95 4.4.1 腐植酸對砷與水鐵礦共沉澱的影響 95 4.4.2 堆肥溶液從砷–水鐵礦共沉澱釋放砷 97 4.5 砷循環中的水鐵礦 99 第五章 結論 101 參考文獻 102

    Anawar, H.M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., Safiullah, S., & Kato, K. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. Journal of Geochemical Exploration, 77(2-3), 109-131.
    Appelo, C.A.J., Van der Weiden, M.J.J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science & Technology, 36(14), 3096-3103.
    Berg, M., Stengel, C., Trang, P. T. K., Viet, P. H., Sampson, M. L., Leng, M., Samreth, S., & Fredericks, D. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Science of the Total Environment, 372(2-3), 413-425.
    Bundschuh, J., Farias, B., Martin, R., Storniolo, A., Bhattacharya, P., Cortes, J., Bonorino, G., & Albouy, R. (2004). Groundwater arsenic in the Chaco-Pampean plain, Argentina: case study from Robles county, Santiago del Estero province. Applied Geochemistry, 19(2), 231-243.
    Chung, Y.L., Liaw, Y.P., Hwang, B.F., Cheng, Y.Y., Lin, M.S., Kuo, Y.C., & Guo, H.R. (2013). Arsenic in drinking and lung cancer mortality in Taiwan. Journal of Asian Earth Sciences, 77, 327-331.
    Cornell, R.M., & Schwertmann, U. (1979). Influence of organic anions on the crystallization of ferrihydrite. Clays and Clay Minerals, 27(6), 402-410.
    Das, S., Hendry, M.J., & Essilfie-Dughan, J. (2011). Effects of adsorbed arsenate on the rate of transformation of 2-line ferrihydrite at pH 10. Environmental science & technology, 45(13), 5557-5563.
    Das, S., Chou, M.L., Jean, J.S., Liu, C.C., & Yang, H.J. (2016). Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem. Science of the Total Environment, 542, 642-652.
    de Melo, B.A.G., Motta, F.L., & Santana, M.H.A. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering: C, 62, 967-974.
    Deng, Y., Weng, L., Li, Y., Ma, J., & Chen, Y. (2019). Understanding major NOM properties controlling its interactions with phosphorus and arsenic at goethite-water interface. Water research, 157, 372-380.
    Edmunds, W.M., Ahmed, K.M., & Whitehead, P.G. (2015). A review of arsenic and its impacts in groundwater of the Ganges–Brahmaputra–Meghna delta, Bangladesh. Environmental Science: Processes & Impacts, 17(6), 1032-1046.
    Eggleton, R. A., & Fitzpatrick, R. W. (1988). New data and a revised structural model for ferrihydrite. Clays and Clay minerals, 36, 111-124.
    Erbs, J.J., Berquó, T.S., Reinsch, B.C., Lowry, G.V., Banerjee, S.K., & Penn, R.L. (2010). Reductive dissolution of arsenic-bearing ferrihydrite. Geochimica et Cosmochimica Acta, 74(12), 3382-3395.
    Fakour, H., & Lin, T.F. (2014). Experimental determination and modeling of arsenic complexation with humic and fulvic acids. Journal of hazardous materials, 279, 569-578.
    Fazal, M.A., Kawachi, T., & Ichion, E. (2001). Validity of the latest research findings on causes of groundwater arsenic contamination in Bangladesh. Water International, 26(3), 380-389.
    Ghosh, K., Das, I., Das, D.K., & Sanyal, S.K. (2012). Evaluation of humic and fulvic acid extracts of compost, oilcake, and soils on complex formation with arsenic. Soil Research, 50(3), 239-248.
    Grafe, M. J. E. A. M., Eick, M. J., & Grossl, P. R. (2001). Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Science Society of America Journal, 65(6), 1680-1687.
    Grafe, M., Eick, M.J., Grossl, P.R., & Saunders, A.M. (2002). Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. Journal of Environmental Quality, 31(4), 1115-1123.
    Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J.F. (1994). Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental science & technology, 28(1), 38-46.
    Hiemstra, T. (2013). Surface and mineral structure of ferrihydrite. Geochimica et Cosmochimica Acta, 105, 316-325.
    Hu, S., Lu, Y., Peng, L., Wang, P., Zhu, M., Dohnalkova, A.C., Chen, H., Lin, Z., Dang, Z., & Shi, Z. (2018). Coupled kinetics of ferrihydrite transformation and As (V) sequestration under the effect of humic acids: a mechanistic and quantitative study. Environmental science & technology, 52(20), 11632-11641.
    Jackson, B. P., & Miller, W. P. (2000). Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides. Soil Science Society of America Journal, 64(5), 1616-1622.
    Jain, A., Raven, K. P., & Loeppert, R. H. (1999). Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH-release stoichiometry. Environmental Science & Technology, 33(8), 1179-1184.
    Jambor, J.L., & Dutrizac, J.E. (1998). Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chemical reviews, 98(7), 2549-2586.
    Jia, Y., Xu, L., Wang, X., & Demopoulos, G. P. (2007). Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochimica et Cosmochimica Acta, 71(7), 1643-1654.
    Karim, M. M. (2000). Arsenic in groundwater and health problems in Bangladesh. Water Research, 34(1), 304-310.
    Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C., & Hemond, H. F. (2001). Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science & Technology, 35(13), 2778-2784.
    Kim, E.J., Hwang, B.R., & Baek, K. (2015). Effects of natural organic matter on the coprecipitation of arsenic with iron. Environmental geochemistry and health, 37, 1029-1039.
    Ko, I., Kim, J.Y., & Kim, K.W. (2004). Arsenic speciation and sorption kinetics in the As–hematite–humic acid system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 234(1-3), 43-50.
    Ko, I., Davis, A. P., Kim, J. Y., & Kim, K. W. (2007). Effect of contact order on the adsorption of inorganic arsenic species onto hematite in the presence of humic acid. Journal of hazardous materials, 141(1), 53-60.
    Lai, M. S., Hsueh, Y. M., Chen, C. J., Shyu, M. P., Chen, S. Y., Kuo, T. L., Wu, M.M., & Tai, T. Y. (1994). Ingested inorganic arsenic and prevalence of diabetes mellitus. American Journal of Epidemiology, 139(5), 484-492.
    Li, Y., Zhang, C., Yang, M., He, H., & Arai, Y. (2022). Carbonate accelerated transformation of ferrihydrite in the presence of phosphate. Geoderma, 417, 115811.
    Lin, H.T., Wang, M.C., & Li, G.C. (2004). Complexation of arsenate with humic substance in water extract of compost. Chemosphere, 56(11), 1105-1112.
    Liu, E., Xie, Z., Fang, J., Wang, J., Yang, Y., & Chen, M. (2022). Nitrate-mediated biomigration and transformation of As/Fe in arsenic-bearing ferrihydrite. Applied Geochemistry, 138, 105204.
    Lu, H.L. (2023). Implications of synthetic and natural goethite compositions on arsenic sequential extraction techniques and environmental cycling (Master’s thesis, National Cheng Kung University, Tainan, Taiwan ). Retrieved from https://hdl.handle.net/11296/96tep4
    Luo, C., Xie, Y., Li, F., Jiang, T., Wang, Q., Jiang, Z., & Wei, S. (2015). Adsorption of arsenate on iron oxides as influenced by humic acids. Journal of environmental quality, 44(6), 1729-1737.
    Maity, J.P., Nath, B., Kar, S., Chen, C.Y., Banerjee, S., Jean, J.S., Liu, M.Y., Centeno, J.A., Bhattacharya, P., Chang, C.L., & Santra, S.C. (2012). Arsenic-induced health crisis in peri-urban Moyna and Ardebok villages, West Bengal, India: an exposure assessment study. Environmental Geochemistry and Health, 34, 563-574.
    McArthur, J.M., Ravenscroft, P., Safiulla, S., & Thirlwall, M.F. (2001). Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37(1), 109-117.
    Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L., & Parise, J.B. (2007a). The structure of ferrihydrite, a nanocrystalline material. Science, 316(5832), 1726-1729.
    Michel, F.M., Ehm, L., Liu, G., Han, W.Q., Antao, S.M., Chupas, P.J., Lee, P. L., Knorr, K., Eulert, H., Kim, J., Grey, C. P., Celestian, A. J., Gillow, J., Schoonen, M. A. A., Strongin, D. R., & Parise, J.B. (2007b). Similarities in 2-and 6-line ferrihydrite based on pair distribution function analysis of X-ray total scattering. Chemistry of Materials, 19(6), 1489-1496.
    Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., & Rahmanñ, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395(6700), 338-338.
    Paige, C. R., Snodgrass, W. J., Nicholson, R. V., & Scharer, J. M. (1997). An arsenate effect on ferrihydrite dissolution kinetics under acidic oxic conditions. Water Research, 31(9), 2370-2382.
    Parfitt, R. L., Fraser, A. R., & Farmer, V. C. (1977). Adsorption on hydrous oxides. III. Fulvic acid and humic acid on goethite, gibbsite and imogolite. Journal of soil science, 28(2), 289-296.
    Rowland, H. A., Omoregie, E. O., Millot, R., Jimenez, C., Mertens, J., Baciu, C., Hug, S. J. & Berg, M. (2011). Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Applied Geochemistry, 26(1), 1-17.
    Redman, A. D., Macalady, D. L., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental science & technology, 36(13), 2889-2896.
    Riveros, P. A., Dutrizac, J. E., & Spencer, P. (2001). Arsenic disposal practices in the metallurgical industry. Canadian Metallurgical Quarterly, 40(4), 395-420.
    Samal, A. C., Kar, S., Maity, J. P., & Santra, S. C. (2013). Arsenicosis and its relationship with nutritional status in two arsenic affected areas of West Bengal, India. Journal of Asian Earth Sciences, 77, 303-310.
    Schwertmann, U., & Cornell, R. M. (2000). Iron oxides in the laboratory: preparation and characterization. John Wiley & Sons.
    Schwertmann, U., Carlson, L., & Murad, E. (2001). Properties of iron oxides in two Finnish lakes in relation to the environment of their formation. Clays and Clay Minerals, 35(4), 297-304.
    Schwertmann, U., Stanjek, H., & Becher, H. H. (2004). Long-term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25°C. Clay Minerals, 39(4), 433-438.
    Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry, 17(5), 517-568.
    Smith, A. H., Lingas, E. O., & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the world health organization, 78(9), 1093-1103.
    Souza, T. G., Freitas, E. T., Mohallem, N. D., & Ciminelli, V. S. (2021). Defects induced by Al substitution enhance As (V) adsorption on ferrihydrites. Journal of Hazardous Materials, 420, 126544.
    Sposito, G. (2008). The chemistry of soils. Oxford university press.
    Sun, J., Mailloux, B. J., Chillrud, S. N., van Geen, A., Thompson, A., & Bostick, B. C. (2018). Simultaneously quantifying ferrihydrite and goethite in natural sediments using the method of standard additions with X-ray absorption spectroscopy. Chemical geology, 476, 248-259.
    Tokoro, C., Yatsugi, Y., Koga, H., & Owada, S. (2010). Sorption mechanisms of arsenate during coprecipitation with ferrihydrite in aqueous solution. Environmental Science & Technology, 44(2), 638-643.
    Tokoro, C., Kadokura, M., & Kato, T. (2020). Mechanism of arsenate coprecipitation at the solid/liquid interface of ferrihydrite: A perspective review. Advanced Powder Technology, 31(2), 859-866.
    Tseng, W. P., Chu, H., How, S. W., Fong, J. M., Lin, C. S., & Yeh, S. H. U. (1968). Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. Journal of the national Cancer institute, 40(3), 453-463.
    Varela, M. D. C. R., Filho, M. F. D. J., & Galembeck, F. (1994). Effect of acetate on ferrihydrite crystallization. Hyperfine Interactions, 83, 159-167.
    Violante, A., Gaudio, S. D., Pigna, M., Ricciardella, M., & Banerjee, D. (2007). Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy, and reactivity of iron (III) precipitates. Environmental Science & Technology, 41(24), 8275-8280.
    Wang, Y., Shvartsev, S. L., & Su, C. (2009). Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China. Applied Geochemistry, 24(4), 641-649.
    Waychunas, G. A., Fuller, C. C., Rea, B. A., & Davis, J. A. (1996). Wide angle X-ray scattering (WAXS) study of “two-line” ferrihydrite structure: Effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochimica et Cosmochimica Acta, 60(10), 1765-1781.
    Weidler, P. G. (1997). BET sample pretreatment of synthetic ferrihydrite and its influence on the determination of surface area and porosity. Journal of Porous Materials, 4(3), 165-169.
    Weng, L., Van Riemsdijk, W. H., & Hiemstra, T. (2009). Effects of fulvic and humic acids on arsenate adsorption to goethite: experiments and modeling. Environmental Science & Technology, 43(19), 7198-7204.
    Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica chimica acta, 436(2), 309-323.
    Wu, M. M., Kuo, T. L., Hwang, Y. H., & Chen, C. J. (1989). Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. American journal of epidemiology, 130(6), 1123-1132.
    Xu, X., Chen, C., Wang, P., Kretzschmar, R., & Zhao, F. J. (2017). Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environmental Pollution, 231, 37-47.
    Xue, Q., Ran, Y., Tan, Y., Peacock, C. L., & Du, H. (2019). Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments. Chemosphere, 224, 103-110.
    Yang, H. J., Lee, C. Y., Chiang, Y. J., Jean, J. S., Shau, Y. H., Takazawa, E., & Jiang, W. T. (2016). Distribution and hosts of arsenic in a sediment core from the Chianan Plain in SW Taiwan: Implications on arsenic primary source and release mechanisms. Science of the Total Environment, 569, 212-222.
    Yang, Z., Bai, L., Su, S., Wang, Y., Wu, C., Zeng, X., & Sun, B. (2021). Stability of Fe–As composites formed with As (V) and aged ferrihydrite. Journal of Environmental Sciences, 100, 43-50.
    Zhu, M., Northrup, P., Shi, C., Billinge, S. J., Sparks, D. L., & Waychunas, G. A. (2014). Structure of sulfate adsorption complexes on ferrihydrite. Environmental Science & Technology Letters, 1(1), 97-101.
    Zhu, J., Pigna, M., Cozzolino, V., Caporale, A. G., & Violante, A. (2011). Sorption of arsenite and arsenate on ferrihydrite: Effect of organic and inorganic ligands. Journal of Hazardous Materials, 189(1-2), 564-571.

    無法下載圖示 校內:2029-08-30公開
    校外:2029-08-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE