簡易檢索 / 詳目顯示

研究生: 陳富坤
Tan, Foo-Quant
論文名稱: 運用GPS觀測量估算載具阻力
The Estimation of Vehicle Resistance Forces Using GPS Measurements
指導教授: 何慶雄
Ho, Ching-Shun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 46
中文關鍵詞: GPS載具阻力加權最小二次平方法擴展式卡爾曼濾波器
外文關鍵詞: GPS, Vehicle resistance force, Weight Least Squares, Extended Kalman Filterters
相關次數: 點閱:109下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著GPS定位精度越來高以及價格越來越低,因此GPS已經在民間被廣泛應用。汽車在行駛的過程會因為受到阻力而減速,因此可以透過GPS求得汽車的位置以及速度變化,之後再跟進一步求得汽車阻力參數,同時也是本研究的最主要目的。
    GPS的輸出資料有虛擬距離、載波相位以及都卜勒觀測量三種。本研究對於汽車位置定位是以虛擬距離經過最小平方法(LS)處理後再透過差分法(DGPS)以及平滑化(Smoothing)來提高定位精度;都卜勒觀測量則用來測量汽車的速度,經過LS處理後便可求得汽車的速度。
    經過LS處理後的GPS資料再經由座標轉換分別代入加權最小二次平方法(WLS)以及擴展式卡爾曼濾波器(EKF;Extended Kalman Filter)以估算汽車阻力參數。
    本研究所採用的接收器接受頻率分別為1HZ以及10HZ,因此試驗分為1HZ試驗以及10HZ試驗。試驗進行過程中,汽車高速在筆直的道路行駛,之後再放掉油門並且排擋至空擋;汽車將會受到滾動摩擦力以及空氣阻力而減速。
    從研究結果看出估算的值很接近參考值,1HZ實驗經過EKF位移與速度修正法估算的FR為0.1301,誤差為2%;CD為0.000299,誤差為0.17%,10HZ實驗經過EKF位移與速度修正法的FR為0.1238,誤差為9%;CD為0.000299,誤差為2%(將會在第4章節詳述)。結論是利用GPS估測汽車阻力參數是可行的,而且成本也比較低。

    The accuracy and precision of GPS is getting higher and the prices are getting lower so GPS is being widely used in civil. Speed of vehicle will be decreased due to the resistance effect. Position and speed change of vehicle can be detected by GPS receiver in order to obtain resistance parameters of vehicle. This is the main purpose of this study.
    There are three kinds of output data from GPS: Pseudo range, Carrier phase and Doppler. In this study, Pseudo range is a measurement to be used to estimate vehicle position. After processing of Least Square method to estimate vehicle position, Smoothing method and Differential GPS (DGPS) are for increasing accuracy. Doppler is a measurement for estimation speed of vehicle, after data processing of Least Square method to have speed of vehicle.
    After GPS data processing of Least Square method and coordinate transformation, substituting speed and position of vehicle to Weight Least Square and Extended Kalman Filter to estimate vehicle resistance parameter.
    Low frequency (1HZ) receiver and high frequency (10HZ) receiver have been used in this study. Therefore experiment is divided into 2 parts: low frequency experiment and high frequency experiment. While experiment processing, vehicle has been driven on a straight and flat road with high speed. Then accelerator is released and transmission gear is turned to neutral gear. Vehicle is deceleration due to aerodynamic drag and rolling resistance.
    Comparing result of estimation with reference value, results of estimation are quite close with reference value. For 1HZ experiment, drag coefficient FR and CD after estimated by EKF are 0.1301 and 0.000299, error are 2% and 0.17%. For 10HZ experiment, drag coefficient FR and CD after estimated by EKF are 0.1238 and 0.000299, error are 9% and 2% Conclusion is estimation resistance of vehicle through GPS is feasible and low cost.
    estimate vehicle resistance parameter.

    目錄 摘要 I ABSTRACT III 誌謝 V 目錄 VI 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第二章 GPS 定位 3 2.1 GPS 觀測量與觀測方程式 3 2.2 載波相位平滑法 4 2.3 GPS差分定位原理 (DGPS) 5 第三章 系統模式與資料處理 7 3.1 Least Squares 演算法 7 3.1.1 Least Squares1-位移求解 7 3.1.2 Least Squares2-速度求解 8 3.1.3 Weight Least Squares 演算法 10 3.2 EKF 演算法 11 3.3 汽車阻力系統模式 13 第四章 實驗結果與討論 15 4.1 實驗設備、過程和參考的結果 15 4.2 動態實驗 16 4.3 1H動態試驗 16 4.3.1 1HZ試驗-WLS對於FR與CD在M矩陣中的限制之測試 16 4.3.2 1HZ動態實驗- 1HZ-位移修正法 19 4.3.3 1HZ動態實驗-速度修正法 20 4.3.4 1HZ動態實驗-位移速度修正法 21 4.4 10HZ動態實驗 22 4.4.1 10HZ試驗-WLS對於FR與CD在M矩陣中的限制測試 22 4.4.2 10HZ動態實驗-位移修正法 25 4.4.3 10HZ動態實驗-速度修正法 25 4.4.4 10HZ動態實驗-位移速度修正法 26 第五章 結論與建議 44 參考文獻 45 表目錄 表4.1針對CD的限制,經過WLS估算出的FR與CD值 17 表4.2CD的限制為〖10〗^8,經過WLS估算出的FR與CD值 18 表4.3CD的限制為〖10〗^9,經過WLS估算出的FR與CD值 18 表4.4CD的限制為〖10〗^10,經過WLS估算出的FR與CD值 19 表4.5對於CD的限制,WLS估算的FR與CD值 23 表4.6CD的限制為〖10〗^8,經過WLS估算出的FR與CD值 24 表4.7CD的限制為〖10〗^9,經過WLS估算出的FR與CD值 24 表4.8CD的限制為〖10〗^10,經過WLS估算出的FR與CD值 25 圖目錄 圖4.1(a)1HZ試驗解算所得的衛星顆數對取樣時刻圖 28 圖4.1(b)1HZ試驗解算所得的汽車速度對取樣時刻圖 28 圖4.1(c)1HZ試驗解算所得的阻力參數FR對取樣時刻圖 29 圖4.1(d)1HZ試驗解算所得的阻力參數CD對取樣時刻圖 29 圖4.1(e)1HZ試驗解算所得的殘餘值z對取樣時刻圖 30 圖4.2(a)1HZ試驗選取固定衛星解算所得的使用衛星顆數對取樣時刻圖 30 圖4.2(b)1HZ試驗經位移修正法解算所得的汽車速度對取樣時刻圖 31 圖4.2(c)1HZ試驗經位移修正法解算所得的阻力參數FR對取樣時刻圖 31 圖4.2(d)1HZ試驗經位移修正法解算所得的阻力參數CD對取樣時刻圖 32 圖4.2(e)1HZ試驗經位移修正法解算所得的殘餘值z對取樣時刻圖 32 圖4.3(a)1HZ試驗經速度修正法解算所得的汽車速度對取樣時刻圖 33 圖4.3(b)1HZ試驗經速度修正法解算所得的阻力參數FR對取樣時刻圖 33 圖4.3(c)1HZ試驗經速度修正法解算所得的阻力參數CD對取樣時刻圖 34 圖4.3(d)1HZ試驗經速度修正法解算所得的殘餘值z對取樣時刻圖 34 圖4.4(a)1HZ試驗經位移速度修正法解算所得的汽車速度對取樣時刻圖 35 圖4.4(b)1HZ試驗經位移速度修正法解算所得的阻力參數FR對取樣時刻圖 35 圖4.4(c)1HZ試驗經位移速度修正法解算所得的阻力參數CD對取樣時刻圖 36 圖4.4(d)1HZ試驗經位移速度修正法解算所得的殘餘值z對取樣時刻圖 36 圖4.5(a)10HZ試驗選取固定衛星解算所得的使用衛星顆數對取樣時刻圖 37 圖4.6(a)10HZ試驗經位移修正法解算所得的汽車速度對取樣時刻圖 37 圖4.6(b)10HZ試驗經位移修正法解算所得的阻力參數FR對取樣時刻圖 38 圖4.6(c)10HZ試驗經位移修正法解算所得的阻力參數CD對取樣時刻圖 38 圖4.6(d)10HZ試驗經位移修正法解算所得的殘餘值z對取樣時刻圖 39 圖4.7(a)10HZ試驗經速度修正法解算所得的汽車速度對取樣時刻圖 39 圖4.7(b)10HZ試驗經速度修正法解算所得的阻力參數FR對取樣時刻圖 40 圖4.7(c)10HZ試驗經速度修正法解算所得的阻力參數CD對取樣時刻圖 40 圖4.7(d)10HZ試驗經速度修正法解算所得的殘餘值z對取樣時刻圖 41 圖4.8(a)10HZ試驗經位移速度修正法解算所得的汽車速度對取樣時刻圖 41 圖4.8(b)10HZ試驗經位移速度修正法解算所得的阻力參數FR對取樣時刻圖 42 圖4.8(c)10HZ試驗經位移速度修正法解算所得的阻力參數CD對取樣時刻圖 42 圖4.8(d)10HZ試驗經位移速度修正法解算所得的殘餘值z對取樣時刻圖 43

    [1]R.A. Anderson, “USING GPS FOR MODEL BASED ESTIMATION OF CRITICAL VEHICLE STATES”, MS Thesis, the department of Mechanical Engineering, Auburn University, Auburn, Alabama, U.S.A., December 17, 2004.
    [2]J. Ryu, E.J. Rossetter, and J.C. Gerdes, “Vehicle Sideslip and Roll Parameter Estimation using GPS”, Proceedings of 6th International Symposium on Advanced Vehicle Control (AVEC 2002), pp. 115-122, Hiroshima, Japan, July 2002
    [3]J.Y. Wong (1993), Theory of Ground Vehicles, John Wiley & Sons, Inc., New York, NY, 1993
    [4]K.-J, Han, I.-K. Kim, H.Y. Jo, and K.-S.Huh, “Development and experimental evaluation of an online estimation system for vehicle mass”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering (JAUTO) 2009, pp.167-176, February 2009.
    [5]Jihan Ryu, “STATE AND PARAMETER ESTIMATION FOR VEHICLE DYNAMICS CONTROL USING GPS”, PhD Dissertation, the Department of Mechanical Engineering, Stanford University, Palo Alto, California, U.S.A. , December 2004.
    [6] G Hodgson and M C Best “A parameter identifying a Kalman filter observer for vehicle handling dynamics”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering (JAUTO) 2006, August 2006
    [7]E. Steinmetz, R. Emardson, and P. Jarlemark, “IMPROVED VEHICLE PARAMEER ESTIMATION USING SENSOR FUSION”, Proceedings of XIX IMEKO World Congress, Lisbon, Portugal, Sep. 6-11, 2009
    [8]Ching-Shun Ho, “A study on Estimating Car Drag Parameter With Using GPS Solution”, Proceedings of the 1997 National Technical Meeting of The Institute of Navigation, Santa Monica, California, January 1997.
    [9] King Tin Leung, James Whidborne, David Purdy, Phil Barber, Road Vehicle State Estimation using Low-Cost GPS/INS, Mechanical Systems and Signal.
    [10]Rusty Allen Anderson(2004), USING GPS FOR MODEL BASED ESTIMATION OF CRITICAL VEHILCE STATE AND PARAMETER, Thesis, Auburn University
    [11]蔡國旭(1997),應用DGPS方法於汽車阻力參數之估算,碩士論文,國立成功大學
    [12]日智揖(2003),區域性增強系統定位精度之研究及分析,碩士論文,國立成功大學
    [13]陳進忠(2000),GPS都卜勒觀測值模式化及差分法測是,碩士論文,國立成功大學
    [14]郭家均(2012),GPS與地震儀資料分析與比較,碩士論文,國立成功大學

    下載圖示 校內:2016-07-01公開
    校外:2016-07-01公開
    QR CODE