| 研究生: |
許水庭 HSU, SHUI-TING |
|---|---|
| 論文名稱: |
新穎模型萃取技術用於低溫鍺通道環繞式閘極和鰭式場效電晶體之效能分析 Benchmarking of Cryogenic GeOI GAA/FinFETs Performance via a Novel Compact Model Extraction Methodology |
| 指導教授: |
盧達生
Lu, Darsen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | BSIM-CMG 、簡易模型 、低溫 、GeOI 、FinFET 、GAAFET 、遷移率 、功耗 、模型調整 |
| 外文關鍵詞: | BSIM-CMG, Compact Modeling, Cryogenic, GeOI, FinFET, GAAFET, Mobility, Power Consumption, Model Adjustment |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,現代 AI 模型的運算需求呈現超越指數的成長,訓練所需的 FLOPS 幾乎每六個月就翻倍。然而,隨著電晶體微縮停滯於 3 nm 節點,僅靠閘極間距的縮減已無法再提供足夠的效能,因此如何繼續提升效能成為一大挑戰。
在低溫下,電路效能顯著提升:提高載子遷移率和導通電流、大幅降低次臨界擺幅,且漏電流大幅降低,整體效能密度因此提高。若將通道材料由矽換成鍺,鍺的電子與電洞的遷移率在低溫下皆有更大幅度的上升,可帶來更高的驅動電流,這些低溫優勢更被放大。因此提供了一個提升效能的方法。
本研究從低溫量測、參數萃取到建立低溫簡易模型。我們使用實驗室建立之 Python 參數萃取平台,以業界常見的元件模型BSIM‑CMG 為基礎,建立了GeOI FinFET 以及GeOI GAAFET 的低溫簡易模型。接著,透過 HSPICE 進行電路模擬,比較不同介面處理(O3, O3/NH3, O3/N2H4)與結構在頻率與功耗上的表現和元件物理特性分析。
最後在完成 GeOI FinFET 的低溫簡易模型後,我們進行後續模型調整,藉以移除外部電阻與介面陷阱等非理想效應,並進行調整後的物理特性分析,來探討鍺通道元件在低溫的電性表現。
In recent years, the compute demand of modern AI models has entered a super‑exponential phase, with training FLOPS now doubling roughly every six months. With transistor scaling stalled at the 3 nm node, gate‑pitch reduction alone can no longer deliver the required performance. This work explores a Beyond‑Moore solution that combines cryogenic operation with germanium‑channel CMOS.
At cryogenic temperatures, circuit performance is markedly enhanced: carrier mobility rises, the sub‑threshold swing steepens, and leakage current plummets—together boosting effective performance density. Substituting germanium for silicon further magnifies these gains, because both electron and hole mobilities experience an even larger cryogenic upturn, delivering higher drive current.
This study completes a comprehensive process from cryogenic measurements to parameter extraction and finally establishes a cryogenic compact model, utilizing the device parameter extraction python platform, building up the cryogenic compact model based on Berkeley Short‑channel IGFET Model – Common Multi‑Gate (BSIM-CMG). Based on experimental data, we established the cryogenic compact models for Germanium-On-Insulator (GeOI) FinFET and GeOI GAAFET. Next, we conducted HSPICE circuit simulations to analyze the frequency and power consumption performance for the different interface treatments (O3, O3/NH3, O3/N2H4) and structures.
After establishing the cryogenic GeOI FinFET compact model, we performed post model adjustment (PMA) to remove non-ideal effects to predict the device’s electrical characteristics.
[1] R. R. Schaller, “Moore’s law: past, present and future,” IEEE Spectr., vol. 34, no. 6, pp. 52–59, Jun. 1997, doi: 10.1109/6.591665.
[2] M. Bohr, “A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper,” IEEE Solid-State Circuits Soc. Newsl., vol. 12, no. 1, pp. 11–13, 2007, doi: 10.1109/N-SSC.2007.4785534.
[3] J. Ryckaert et al., “Enabling Sub-5nm CMOS Technology Scaling Thinner and Taller!,” in 2019 IEEE International Electron Devices Meeting (IEDM), Feb. 2019, p. 29.4.1-29.4.4. doi: 10.1109/IEDM19573.2019.8993631.
[4] “Computing Power and the Governance of AI | GovAI.” Accessed: Jun. 10, 2025. [Online]. Available: https://www.governance.ai/analysis/computing-power-and-the-governance-of-ai
[5] A. Chabane et al., “Cryogenic Characterization and Modeling of 14 nm Bulk FinFET Technology,” in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), Sep. 2021, pp. 67–70. doi: 10.1109/ESSCIRC53450.2021.9567802.
[6] M. C. W. | U. of N. Dame, “Cryogenic Computing,” Nanoelectronic Devices and Circuits Lab. Accessed: Jun. 02, 2025. [Online]. Available: https://ndclab.nd.edu/research/cryogenic-computing/
[7] H.-C. Han, F. Jazaeri, A. D’Amico, A. Baschirotto, E. Charbon, and C. Enz, “Cryogenic Characterization of 16 nm FinFET Technology for Quantum Computing,” in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), Sep. 2021, pp. 71–74. doi: 10.1109/ESSCIRC53450.2021.9567747.
[8] L. J. Bradley, A. B. Horsfall, and A. Dyson, “Modelling the Key Material Properties of Germanium for Device Simulation in Cryogenic Environments”.
[9] M. Rudan, Physics of Semiconductor Devices. New York, NY: Springer, 2015. doi: 10.1007/978-1-4939-1151-6.
[10] “Advanced Semiconductor Fundamentals | PDF.” Accessed: Jun. 04, 2025. [Online]. Available: https://www.scribd.com/document/523938418/Advanced-Semiconductor-Fundamentals
[11] A. Beckers, F. Jazaeri, and C. Enz, “Cryogenic MOS Transistor Model,” IEEE Trans. Electron Devices, vol. 65, no. 9, pp. 3617–3625, Sep. 2018, doi: 10.1109/TED.2018.2854701.
[12] G. Pahwa, P. Kushwaha, A. Dasgupta, S. Salahuddin, and C. Hu, “Compact Modeling of Temperature Effects in FDSOI and FinFET Devices Down to Cryogenic Temperatures,” IEEE Trans. Electron Devices, vol. 68, no. 9, pp. 4223–4230, Sep. 2021, doi: 10.1109/TED.2021.3097971.
[13] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, pp. 149–154, Jan. 1967, doi: 10.1016/0031-8914(67)90062-6.
[14] A. Beckers, F. Jazaeri, A. Ruffino, C. Bruschini, A. Baschirotto, and C. Enz, “Cryogenic characterization of 28 nm bulk CMOS technology for quantum computing,” in 2017 47th European Solid-State Device Research Conference (ESSDERC), Sep. 2017, pp. 62–65. doi: 10.1109/ESSDERC.2017.8066592.
[15] J. D. Michl, “Charge trapping and variability in CMOS technologies at cryogenic temperatures,” Thesis, Technische Universität Wien, 2022. Accessed: Jun. 06, 2025. [Online]. Available: https://repositum.tuwien.at/handle/20.500.12708/80328
[16] H. Bohuslavskyi et al., “Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening,” IEEE Electron Device Lett., vol. 40, no. 5, pp. 784–787, May 2019, doi: 10.1109/LED.2019.2903111.
[17] Y. Han, “Silicon nano-devices for ultra-low power cryogenic electronics,” PhD Thesis, RWTH Aachen U., RWTH Aachen University, 2024.
[18] K.-H. Kao et al., “Subthreshold Swing Saturation of Nanoscale MOSFETs Due to Source-to-Drain Tunneling at Cryogenic Temperatures,” IEEE Electron Device Lett., vol. 41, no. 9, pp. 1296–1299, Sep. 2020, doi: 10.1109/LED.2020.3012033.
[19] A. Beckers, F. Jazaeri, and C. Enz, “Inflection Phenomenon in Cryogenic MOSFET Behavior,” IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 1357–1360, Mar. 2020, doi: 10.1109/TED.2020.2965475.
[20] H.-C. Han, F. Jazaeri, A. D’Amico, A. Baschirotto, E. Charbon, and C. Enz, “Cryogenic Characterization of 16 nm FinFET Technology for Quantum Computing,” in ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), Sep. 2021, pp. 71–74. doi: 10.1109/ESSCIRC53450.2021.9567747.
[21] A. K. Jonscher, “Semiconductors at cryogenic temperatures,” Proc. IEEE, vol. 52, no. 10, pp. 1092–1104, Oct. 1964, doi: 10.1109/PROC.1964.3296.
[22] F. Balestra and G. Ghibaudo, “Physics and performance of nanoscale semiconductor devices at cryogenic temperatures,” Semicond. Sci. Technol., vol. 32, no. 2, p. 023002, Jan. 2017, doi: 10.1088/1361-6641/32/2/023002.
[23] X.-R. Yu et al., “First Demonstration of Defect Elimination for Cryogenic Ge FinFET CMOS Inverter Showing Steep Subthreshold Slope by Using Ge-on-Insulator Structure,” in 2023 International Electron Devices Meeting (IEDM), Feb. 2023, pp. 1–4. doi: 10.1109/IEDM45741.2023.10413801.
[24] X.-R. Yu, J. Y. Hung, T.-C. Cho, W. C.-Y. Ma, Y.-J. Lee, and Y.-H. Wang, “Plasma-Free Nitridation for MOSCAPs and GeOI GAAFETs Utilizing Cyclic Passivation of Ozone/Hydrazine With Low Leakage Current, Low Interface Traps, and High Thermal Stability,” IEEE Trans. Electron Devices, vol. 72, no. 4, pp. 1597–1603, Apr. 2025, doi: 10.1109/TED.2025.3545401.
[25] Keysight, “Technical Support Exemplar,” Keysight. Accessed: Jun. 25, 2025. [Online]. Available: https://www.keysight.com/tw/zh/support/key-35071/b1500a-semiconductor-device-parameter-analyzer.html
[26] V. P.-H. Hu, M.-L. Fan, P. Su, and C.-T. Chuang, “Comparative Leakage Analysis of GeOI FinFET and Ge Bulk FinFET,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3596–3600, Oct. 2013, doi: 10.1109/TED.2013.2278032.
[27] K. Takeuchi, T. Mizutani, T. Saraya, M. Kobayashi, and T. Hiramoto, “Variability of MOSFET Series Resistance Extracted from Individual Devices: Is Direct Variability Measurement Possible?,” in 2023 35th International Conference on Microelectronic Test Structure (ICMTS), Tokyo, Japan: IEEE, Mar. 2023, pp. 1–4. doi: 10.1109/icmts55420.2023.10094106.
[28] Y. S. Chauhan et al., FinFET modeling for IC simulation and design: using the BSIM-CMG standard. London, UK: Academic Press Inc, 2015.
[29] R. Trevisoli et al., “A New Method for Series Resistance Extraction of Nanometer MOSFETs,” IEEE Trans. Electron Devices, vol. 64, no. 7, pp. 2797–2803, Jul. 2017, doi: 10.1109/TED.2017.2704928.
[30] G. Ghibaudo, “New method for the extraction of MOSFET parameters,” Electron. Lett., vol. 24, no. 9, pp. 543–545, Apr. 1988, doi: 10.1049/el:19880369.
[31] J. B. Henry, Q. Rafhay, A. Cros, and G. Ghibaudo, “New Y-function based MOSFET parameter extraction method from weak to strong inversion range,” Solid-State Electron., vol. 123, pp. 84–88, Sep. 2016, doi: 10.1016/j.sse.2016.06.004.
[32] S. Jain, “Measurement of threshold voltage and channel length of submicron MOSFETs,” IEE Proc. Solid-State Electron Devices, vol. 135, no. 6, pp. 162–164, Dec. 1988, doi: 10.1049/ip-i-1.1988.0029.
[33] B. H. Hong et al., “Subthreshold Degradation of Gate-all-Around Silicon Nanowire Field-Effect Transistors: Effect of Interface Trap Charge,” IEEE Electron Device Lett., vol. 32, no. 9, pp. 1179–1181, Sep. 2011, doi: 10.1109/led.2011.2159473.
[34] J. Seo and C. Shin, “Experimental study of interface traps in MOS capacitor with Al-doped HfO2,” Semicond. Sci. Technol., vol. 35, no. 8, p. 085029, Jul. 2020, doi: 10.1088/1361-6641/ab9847.
[35] E. H. Nicollian and A. Goetzberger, “The si-sio, interface – electrical properties as determined by the metal-insulator-silicon conductance technique,” Bell Syst. Tech. J., vol. 46, no. 6, pp. 1055–1033, Jul. 1967, doi: 10.1002/j.1538-7305.1967.tb01727.x.
[36] “BSIM-CMG | BSIM GROUP.” Accessed: Jul. 02, 2025. [Online]. Available: https://bsim.berkeley.edu/models/bsimcmg/
[37] “IRDSTM 2023: More Moore - IEEE IRDSTM.” Accessed: Jul. 03, 2025. [Online]. Available: https://irds.ieee.org/editions/2023/20-roadmap-2023-edition/130-irds%E2%84%A2-2023-more-moore
[38] “On Apparent Electron Mobility in Si nMOSFETs from Diffusive to Ballistic Regime,” ResearchGate. Accessed: Jul. 03, 2025. [Online]. Available: https://www.researchgate.net/publication/304631633_On_Apparent_Electron_Mobility_in_Si_nMOSFETs_from_Diffusive_to_Ballistic_Regime
[39] “The importance of the spacer region to explain short channels mobility collapse in 28nm Bulk and FDSOI technologies,” ResearchGate. Accessed: Jul. 03, 2025. [Online]. Available: https://www.researchgate.net/publication/287048327_The_importance_of_the_spacer_region_to_explain_short_channels_mobility_collapse_in_28nm_Bulk_and_FDSOI_technologies
[40] T. Chu, R. A. Vega, E. Alptekin, D. Guo, and H. Shang, “Understanding short channel mobility degradation by accurate external resistance decomposition and intrinsic mobility extraction,” J. Appl. Phys., vol. 117, no. 6, p. 064507, Feb. 2015, doi: 10.1063/1.4908111.
[41] “Remote phonon scattering in field-effect transistors with a high κ insulating layer | Journal of Applied Physics | AIP Publishing.” Accessed: Jul. 03, 2025. [Online]. Available: https://pubs.aip.org/aip/jap/article/103/1/014501/987656/Remote-phonon-scattering-in-field-effect?utm_source=chatgpt.com
[42] C. Jeong, D. A. Antoniadis, and M. S. Lundstrom, “On Backscattering and Mobility in Nanoscale Silicon MOSFETs,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2762–2769, Jan. 2009, doi: 10.1109/TED.2009.2030844.
[43] C.-C. Hsieh, “Compact Modeling of Advanced Fully-Depleted CMOS at Cryogenic Temperatures with BSIMCMG,” NCKU, 2022.
[44] Chuang M.-H., “Cryogenic temperature Compact model Based on FinFET,” NCKU, 2023.
[45] Pai Y.-C., “Compact Modeling with Power Performance Analysis & Reliability Characterization of Advanced Cryogenic Ge/Si-Channel FinFETs,” NCKU, 2024.
[46] V. Hariharan, J. Vasi, and V. R. Rao, “Drain Current Model Including Velocity Saturation for Symmetric Double-Gate MOSFETs,” IEEE Trans. Electron Devices, vol. 55, no. 8, pp. 2173–2180, Aug. 2008, doi: 10.1109/TED.2008.926745.
[47] siliconvlsi, “What is Velocity Saturation in Short-Channel MOS transistors - Siliconvlsi.” Accessed: Jul. 03, 2025. [Online]. Available: https://siliconvlsi.com/what-is-velocity-saturation-in-short-channel-mos-transistors/
[48] M. F. Al-Mistarihi, A. Rjoub, and N. R. Al-Taradeh, “Drain induced barrier lowering (DIBL) accurate model for nanoscale Si-MOSFET transistor,” in 2013 25th International Conference on Microelectronics (ICM), Feb. 2013, pp. 1–4. doi: 10.1109/ICM.2013.6735011.
[49] “[반도체소자] 5. Drain Induced Barrier Lowering(DIBL),” 반도체 공부 기록. Accessed: Jul. 03, 2025. [Online]. Available: https://mse-semi.tistory.com/entry/%EB%B0%98%EB%8F%84%EC%B2%B4%EC%86%8C%EC%9E%90-5-Drain-Induced-Barrier-LoweringDIBL
[50] X. Yuan et al., “Gate-Induced-Drain-Leakage Current in 45-nm CMOS Technology,” IEEE Trans. Device Mater. Reliab., vol. 8, no. 3, pp. 501–508, Sep. 2008, doi: 10.1109/TDMR.2008.2002350.
[51] X. Wang et al., “Experimental investigation on oxidation kinetics of germanium by ozone,” Appl. Surf. Sci., vol. 390, pp. 472–480, Dec. 2016, doi: 10.1016/j.apsusc.2016.08.123.
[52] Y.-T. Chen et al., “Effect of $\hbox{NH}_{3}$ Plasma Nitridation on Hot-Carrier Instability and Low-Frequency Noise in Gd-Doped High-$ \kappa$ Dielectric nMOSFETs,” IEEE Trans. Electron Devices, vol. 58, no. 3, pp. 812–818, Mar. 2011, doi: 10.1109/TED.2010.2101606.
[53] D.-R. Hsieh, C.-C. Lee, Z.-Y. Hong, and T.-S. Chao, “Investigation of NH3 Plasma Nitridation on Hysteresis-Free Gate-All-Around Stacked Poly-Si Nanosheet Channel FeFETs,” in 2022 6th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Oita, Japan: IEEE, Mar. 2022, pp. 24–26. doi: 10.1109/EDTM53872.2022.9798318.
[54] G. Dushaq, A. Nayfeh, and M. Rasras, “Passivation of Ge/high- κ interface using RF Plasma nitridation,” Semicond. Sci. Technol., vol. 33, no. 1, p. 015003, Jan. 2018, doi: 10.1088/1361-6641/aa98cd.
[55] D. D. Lu, “Ultra-low Voltage CMOS with Steep Swing Devices at Room and Cryogenic Temperatures”.
[56] H. Ota et al., “Intrinsic Origin of Electron Mobility Reduction in High-k MOSFETs - From Remote Phonon to Bottom Interface Dipole Scattering,” in 2007 IEEE International Electron Devices Meeting, Washington, DC, USA: IEEE, 2007, pp. 65–68. doi: 10.1109/iedm.2007.4418864.
[57] X. Zhang, P. Chang, G. Du, and X. Liu, “Impacts of Remote Coulomb Scattering on Hole Mobility in Si p-MOSFFETs at Cryogenic Temperatures,” in 2019 Silicon Nanoelectronics Workshop (SNW), Kyoto, Japan: IEEE, Jun. 2019, pp. 1–2. doi: 10.23919/snw.2019.8782899.
[58] H. Xu, J. Zhang, S. Wei, X. Wang, and W. Wang, “Electron Mobility Degradation Due to Remote Coulomb Scattering in Ge MOSFET,” in Proceedings of the 2016 International Conference on Computer Science and Electronic Technology, Zhengzhou, China,: Atlantis Press, 2016. doi: 10.2991/cset-16.2016.72.
[59] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett., vol. 89, no. 25, Dec. 2006, doi: 10.1063/1.2410241.
[60] I. Chambouleyron and R. Campomanes, “Ammonia as an active doping source gas of hydrogenated amorphous germanium films,” Phys. Rev. B, vol. 53, no. 19, pp. 12566–12569, May 1996, doi: 10.1103/PhysRevB.53.12566.
[61] D. Kuzum, “INTERFACE-ENGINEERED GE MOSFETS FOR FUTURE HIGH PERFORMANCE CMOS APPLICATIONS”.
[62] R. Nayak, I. Kianpoor, and P. G. Bahubalindruni, “Low power ring oscillator for IoT applications,” Analog Integr. Circuits Signal Process., vol. 93, no. 2, pp. 257–263, Nov. 2017, doi: 10.1007/s10470-017-1015-2.
[63] “New-Generation Design-Technology Co-Optimization (DTCO): Machine-Learning Assisted Modeling Framework | IEEE Conference Publication | IEEE Xplore.” Accessed: Jul. 16, 2025. [Online]. Available: https://ieeexplore.ieee.org/document/8782897
[64] C. Wang et al., “FinFET resistance mitigation through design and process optimization,” in 2009 International Symposium on VLSI Technology, Systems, and Applications, Apr. 2009, pp. 127–128. doi: 10.1109/VTSA.2009.5159323.
[65] R. Pillarisetty, “Academic and industry research progress in germanium nanodevices,” Nature, vol. 479, no. 7373, pp. 324–328, Nov. 2011, doi: 10.1038/nature10678.
[66] P. Zeitzoff, K. Akarvardar, J. Mody, and A. Konar, “Metrology Requirements & Challenges for Advanced FinFET Technology: Insight from TCAD Simulations”.
校內:2030-07-26公開