簡易檢索 / 詳目顯示

研究生: 王逸帆
Wang, I-Fan
論文名稱: 以陽極化法製備二氧化鈦奈米管陣列及其電致色變元件的應用
Preparation of Titania Nanotube Arrays by Anodization and their Application in Electrochromic Device
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 99
中文關鍵詞: 二氧化鈦奈米管陽極化電致色變
外文關鍵詞: titania nanotubes, anodization, electrochromic device
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1972年Fujishima和Honda發現二氧化鈦具有光觸媒效果,開啟了二氧化鈦的研究熱潮。二氧化鈦的奈米管陣列由於具有獨特的陣列結構及優異的性能,引起人們的關注。本研究利用陽極化製備二氧化鈦的奈米管陣列,藉由改變參數探討在各種反應條件對於奈米管的影響。結果顯示:隨著電壓的增加,奈米管管徑及其長度會隨之增加,而隨著溫度的降低,其長度及管徑有降低的趨勢。添加50%的聚乙二醇為電解質時,可得到較平整及略長的奈米管。
    本文以二氧化鈦奈米管作為電致色變元件的接觸電極,並利用二氧化鈦奈米管的高表面積以提升電致色變元件的轉換效率,以PEDOT/PSS作為奈米管與ITO基板的連接層時,其著色態轉變時間可以降至6sec,為了增加PEDOT的導電度添加DMSO,可使元件的導電度增加,其著色態轉變時間降至3.8sec。
      本文亦以二氧化鈦奈米管電鍍普魯士藍做為電致色變元件的工作電極,發現由於電致色變層的反應面積增加,整體元件的轉換效率有大幅的提升,褪色態轉變時間為0.6sec,而著色態轉變時間為5sec。

    After Fujishima and Honda found that titanium dioxide could have photocatalysis property in 1972, many researchers showed great interests toward titanium dioxide. The successful synthesis of carbon nanotubes by Iijima in 1991 has stimulated the quest for the synthesis of nanotubular structures of other substances and chemical compounds, titania nanotubes as a new type of nano-materials with unique array structure and excellent properties, have attracted much attention around the world. In this thesis, we fabricated titania nanotube arrays by the anodization method and used different electrochemical parameters to characterize the growth behavior of titania nanotubes. Results show that the pore size and tube length will be increased by increasing the anodization voltage but decreasing the anodization temperature. With 50% PEG addition into the electrolyte, the surface of titania nanotubes becomes more smoothly.
    In this thesis, titania nanotube was used as a counter electrode in a electrochromic device due to the high surface area characteristics. Titania nanotubes were transferred to ITO glass by using a PEDOT/PSS layer. The time period for transferring to colored state is 6sec. In order to improve the conductivity of the device, DMSO was added into PEDOT solution and resulted in a further reduced value of 3.8sec.
    This thesis also used titania nanotubes with electroplated prussian blue as a working electrode. The increasing area of electrochromic layer improves the transition efficiency of the electrochromic device. The time period for transferring to the bleached and the colored state is 0.6sec and 5sec, respectively.

    總目錄 摘要 Ⅰ Abstract Ⅱ 總目錄 Ⅲ 圖目錄 Ⅳ 表目錄 XII 第一章 緒論 1 1-1 前言 1 1-2 電致色變效應簡介 4 1-3 二氧化鈦簡介 7 1-4 普魯士藍電致色變材料 11 1-5 研究動機與目的 13 第二章 原理及文獻回顧 14 2-1 電致色變元件 14 2-1-1 電致色變元件的發展 14 2-1-2 電致色變原理 15 2-1-3 電致色變元件構造 15 2-2 二氧化鈦奈米管 23 2-2-1 二氧化鈦奈米管製備方法 23 2-2-2 以陽極化製備二氧化鈦奈米管 26 2-3 普魯士藍 34 第三章 實驗方法 37 3-1 實驗藥品 37 3-2 實驗設備 38 3-3 實驗步驟 39 第四章 結果與討論 42 4-1 以陽極氧化法製備二氧化鈦奈米管 42 4-1-1 二氧化鈦奈米管性質分析 42 4-1-2 在不同陽極化電壓及溫度下二氧化鈦奈米管的形態 46 4-1-3 電解質對於二氧化鈦奈米管的影響 50 4-1-4 陽極化時間對於二氧化鈦奈米管的影響 56 4-1-5 高度規則化的二氧化鈦奈米管陣列 58 4-1-6 二氧化鈦奈米管表面溶解現象 62 4-1-7 二氧化鈦奈米管之開孔 67 4-1-8 製程參數對於二氧化鈦奈米管穿透度的影響 69 4-2 二氧化鈦奈米管作為電致變色元件的電極 73 4-2-1 將二氧化鈦奈米管陣列由鈦基板脫附 73 4-2-2 以ZnO sol-gel作為黏結層 74 4-2-3 以PEDOT/PSS 作為黏結層 81 4-2-4 被覆普魯士藍於二氧化鈦奈米管上 87 4-2-5 以電鍍普魯士藍的二氧化鈦奈米管為工作電極 89 第五章 結論 91 參考文獻 93

    參考文獻
    1. C.G. Granqvist, Solar Energy Materials & Solar Cells, 92, 203 (2008).
    2. 陳建全, “普魯士藍類似物薄膜電極之製備及其電致變色性質”, 國立成功大學碩士論文(1995).
    3. 黃玉仙, “含普魯士藍與六氰鐵化銦電致變色元件之性能與最適化研究”, 國立台灣大學碩士論文(2002).
    4. D. Ulrike “The surface science of titanium dioxide” Surf. Sci. Rep. 48, 53, (2003).
    5. 蔡建成, “由水熱處理二氧化鈦所合成奈米管之結構分析” , 國立成功大學博士論文(2005).
    6. S. Iijima, Nature, 354, 56 (1991).
    7. C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, and M. Nath, Nanotubes, Chem. Phys. Chem., 2(2), 78 (2001).
    8. H. Holtzman, Ind. Eng. Chem., 37, 855(1945).
    9. I. V. Tananaer, M. A. Glushkova, and G. B. Seifer, Zh. Neorg. Khim., 1, 66 (1956).
    10. V. D. Neff, J. Electrochem. Soc., 125, 6, pp. 886-891(1978).
    11. J. R. Platt, The Journal of Chemical Physics, 34, 3, pp.862-863(1961).
    12. S. K. Deb, Appl. Optics supp., 3, 1969, p.192
    13. B. W. Faughnan, R. S. Crandall and P. M. Heyman, R.C.A. Review, 36, 1, pp.177-197(1975).
    14. R. D. Rauh, “Electrochromic windows: an overview”, Electrochimica Acta, 44, pp.3165-3176(1999).
    15. 洪崇榮, “以射頻磁控濺鍍製備 WO3-x / LiBO2 : LiF / NiOz 多層膜之全固態互補式電致色變元件性質研究”, 義守大學碩士論文 (2008).
    16. C. G. Granqvist, Journal of the European Ceramic Society. 25, pp.2907-2912(2005).
    17. N. Can and V. V. Truong, J. Appl. Phys., 78, 9, pp.5675-5679(1995).
    18. P. Hoye﹐Langmuir, 12, pp.1411-1413(1996).
    19. T. Kasuga, M. Hiramatsu, A. Hoson, T, Sekino and K. Nihara, Formation od titanium oxide nanotube, Langmuir, 14, 12, pp.3160-3164 (1998).
    20. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307(1999)
    21. J. H. Jung, H. Kobayashi, K. Bommel, S. Shinkai, and T. Shimizu, “Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template”, Chem. Mater., 14, 11, pp.1445-1447 (2002).
    22. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, and C. A. Grimes, “Hydrogen sensing using titania nanotubes, Sensor. Actuator., 93, 2, pp.338-344 (2003).
    23. 呂怡萱, “二氧化鈦奈米管於染料敏化太陽能電池之探討”, 國立中央大學碩士論文(2006)
    24. M. Adachi, Y. Murata, M. Harada, Y. Yoshikawa, Chem. Lett., 29, 942(2000)
    25. S.Z. Chu, S. Inoue, K. Wada, D. Li, H. Haneda, S. Awatsu, J. Phys. Chem., 107, 6586(2003).
    26. G.K. Mor, K. Shankar, O.K. Varghese, C.A. Grimes, J. Mater. Res. 19, 2989(2004).
    27. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett., 5, 191(2005).
    28. O.K. Varghese., M. Paulose, K. Shankar, G.K. Mor, C.A. Grimes, J. Nanosci. Nanotechnol., 5, 1158(2005).
    29. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Adv. Mater., 15, 624(2003).
    30. G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimes, J. Mater. Res., 19, 628(2004).
    31. P. Hoyer Adv Mater., 8, 857(1996).
    32. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir, 14, 3160(1998).
    33. F. Krumeich, H.J. Muhr, M. Niedeberger, F. Brieri, B, Schnyder, R. J Nesper Am Chem Soc., 121, 8324(1999).
    34. F. Keller, M.S. Hunter, D.L. Robinson, J Electrochem Soc., 100, 411(1953).
    35. J.W. Digg1e, T.C. Downie, C.W. Coulding, Chem Review., 69, 365(1969).
    36. H. Masuda, K. Fukuda, Science, 268, 1466(1995).
    37. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res., 16, 3331(2001).
    38. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, C. A. Grimes, Solar Energy Materials & Solar Cells, 90, pp.2011–2075(2006).
    39. J.M. Macak, H. Tsuchiya 1, A. Ghicov, K. Yasuda 2, R. Hahn, S. Bauer, P. Schmuki, Current Opinion in Solid State and Materials Science, 11, pp. 3–18(2007).
    40. M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald, and C. A. Grimes, J. Phys. Chem. B, 110, 33(2006).
    41. M. Paulose, H.E. Prakasam, O.K. Varghese, L.P., Ke. C. Popat, G.K. Mor, T.A. Desai, and C.A. Grimes, J. Phys. Chem. C, 111, 41, pp.14992-14997(2007).
    42. H.E. Prakasam, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes, J. Phys. Chem. C, 111, pp.7235-7241(2007).
    43. S. P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G. E. Thompson, J. M. Macak, and P. Schmuki, Adv. Mater., 20, pp.4135–4139(2008).
    44. Z. Su and W. Zhou, Adv. Mater., 20, pp.1-5(2008).
    45. H.J. Buser, G. Ron, A. Ludi and P. Engel, “Crystal Structure of Cadmium Hexacyanopalladate(Ⅳ),” J. Chem. Soc. Dalton. Trans., pp.2473-2474 (1974).
    46. D. Ellis, M. Eckhoff, and V. D. Neff, J. Phys. Chem. 85, 1225 (1981).
    47. K. Itaya, T. Ataka, S. Toshima, J. Am. Chem. Soc., 104, 4767 (1982).
    48. R.J. Mortimer and D.R. Rosseinsky, J. Chem. Soc. Dalton. Trans., 2059 (1984).
    49. 呂建興, “普魯士藍薄膜之製備及其電致色變性質研究,” 國立成功大學碩士論文(1995).
    50. D.E. Stilwell, K.H. Park, and M.H. Miles, J. Appl. Electrochem., 22, 325 (1992).
    51. G.K. Mor, O.K. Varghese, M. Paulose, and C.A. Grimes, Adv. Funct. Mater., 15, pp.1291-1296(2005).
    52. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Nano Lett., 5, 191(2005).
    53. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, and C.A. Grimes, J. Phys. Chem. B, 110, 33(2006).
    54. M. Paulose, H.E. Prakasam, O.K. Varghese, L. Peng, K.C. Popat, G.K. Mor, T.A. Desai, and C.A. Grimes, J. Phys. Chem. C, 111, pp.14992-14997(2007).
    55. J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem. Int. Ed. 44, 7463(2005).
    56. S. Yoriya, M. Paulose, O.K. Varghese, G.K. Mor, and C.A. Grimes, J. Phys. Chem. C, 111, pp.13770-13776(2007).
    57. S.P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G.E. Thompson, J.M. Macak, and P. Schmuki, Adv. Mater., 20, pp.4135–4139(2008).
    58. F. Thébault,a B. Vuillemin,a,z R. Oltra,a, J. Kunze,b A. Seyeux,b and P. Schmuki, Electrochemical and Solid-State Letters, 12, 3, C5-C9(2009)
    59. J.M. Macak, S.P. Albu, and P. Schmuki, phys. stat. sol. RRL, 1, 5, pp.181–183 (2007).
    60. Y. Shin and S. Lee, Nano Lett., 8, 10, pp.3171–3173(2008).
    61. C.C. Chen, J.H. Chen, C.G. Chao, Journal of Materials Science, 40, pp.4053 – 4059(2005).
    62. S. Li, G. Zhang, D. Guo, L. Yu, and W. Zhang, J. Phys. Chem. C, 113, pp.12759–12765(2009).
    63. Y.Y. Song, R. Lynch, D. Kim, P. Roy, and P. Schmuki, Electrochemical and Solid-State Letters, 12, 7, C17-C20(2009).
    64. D. Kim, A. Ghicov and P. Schmuki, Electrochemistry Communications, 10, pp.1835–1838(2008).
    65. S.P. Albu, A. Ghicov, J.M. Macak, R. Hahn, and P. Schmuki, Nano letters, 7, 5, pp.1286-1289(2007).
    66. 李廣忠,張文彥,張建,湯惠萍, ”雙通TiO2奈米管陣列光催化膜的研製,” 鈦工業進展, 25, 3(2008).
    67. X. Zhao, S.K. Seo, U.J. Lee, and K.H. Lee, Journal of The Electrochemical Society, 154, 10, C553-C557(2007).
    68. Y.N. Zhang, M. Chen, Z.L. Liu, Y.C. Zhao, Chinese Chemical Letters, 19, pp.1371–1374(2008).
    69. M. Lillo, D. Losic, Journal of Membrane Science, 327, pp.11–17(2009).
    70. S. LI and G. ZHANG, Journal of the Ceramic Society of Japan, 118, 4, pp.291-294(2010).
    71. Y. Jo, I. Jung, I. Lee, J. Choi, and Y. Tak, Electrochemistry Communications, 12, 5, pp.616-619(2010).
    72. K. Kant and D. Losic, P hys. Status Solidi RRL, 3, 5, pp.139–141(2009).
    73. O.K. Varghese, M. Paulose and C. A. Grimes, Nature Nanotechnology, 4, pp.592-597(2009).
    74. L.K. Tan, M.K. Kumar, W.W. An, and H. Gao, Applied Materials and Interfaces, 2, 2, pp.498-503(2010).
    75. C.J. Lin, W.Y. Yu, Y.T. Lu and S.H. Chien, Chem. Commun., (2008).
    76. J. Wang, and Z. Lin, Chem. Mater., 20, 4, pp.1257-1261(2008).
    77. A. Ghicov, S.P. Albu, J.M. Macak, and P. Schmuki, small, 4, 8, pp.1063–1066(2008).
    78. Q. Chen, and D. Xu, J. Phys. Chem., 113, 15, pp.6310-6314(2009).
    79. Q. Chen, D. Xu, Z.Wu and Z. Liu, Nanotechnology, 19(2008).
    80. T.H. Kuo, C.Y. Hsu, K.M. Lee, K.C. Ho, Solar Energy Materials & Solar Cells, 93, pp.1755–1760(2009).
    81. 林俞成, “逆壓印製作導電高分子(PEDOT : PSS)電極圖案,”國立成功大學碩士論文(2008).
    82. S. HARA, H. TANAKA, T. KAWAMOTO, M. TOKUMOTO, M. YAMADA, A. GOTOH, H. UCHIDA, M. KURIHARA, and M. SAKAMOTO, Japanese Journal of Applied Physics, 46, 38, pp. 945-947(2007).
    83. M. Deepa, Arvind Awadhia, Shweta Bhandari, S.L. Agrawal, Electrochimica Acta, 53, pp.7266–7275(2008).

    下載圖示 校內:立即公開
    校外:2013-09-01公開
    QR CODE