簡易檢索 / 詳目顯示

研究生: 賈柏耘
Chia, Po-Yun
論文名稱: 滾齒法與強力刮齒法之刀具曲面方程式及加工位姿的研究
Research on Tool Surface Equation and Machining Position of Hobbing and Power Skiving.
指導教授: 林昌進
Lin, Psang-Dain
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 55
中文關鍵詞: 滾齒法強力刮齒法
外文關鍵詞: Hob, Power Skiving
相關次數: 點閱:92下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 滾齒法是現今製作外齒輪最常見的加工方式。強力刮齒法為一種新型且更高效的齒輪加工法。但目前缺乏這兩種刀具的數學模式。本文提出一個簡單的方法來設計滾刀及強力刮齒刀,所提出的數學模式具有以下特點:
    (1)由齒條與齒輪的嚙合計算外齒輪的數學模式,使用4×4齊次座標轉換矩陣將直線齒型纏繞在圓柱上設計滾齒刀,再以共軛理論求解滾齒刀的切削刃曲面方程式,而由此曲面方程式可知滾刀的設計變數,如此便可簡化刀具設計過程。
    (2)由於強力刮齒刀的切削刃並非一簡單的函數,故吾人定義其為一1×4的矩陣,再使用4×4齊次座標轉換矩陣建立強力刮齒刀與被加工齒輪的位姿,以建立強力刮齒刀的數學模式,而後再以共軛理論求解強力刮齒刀的切削刃曲面方程式,由此曲面方程式可知強力刮齒刀的設計變數,如此便可簡化刀具設計過程。
    (3)吾人建立一具有六個自由度的4×4齊次座標轉換矩陣,並配合滾齒法及強力刮齒法的加工流程,由齊次座標轉換求解此六變數,可計算出滾齒刀及強力刮齒刀加工時的位姿。

    SUMMARY

    The hobbing method is the most common way of making external gears today. The powerful skiving method is a new and more efficient gear machining method. But the current lack of mathematical models of these two kinds of tools. This paper presents a simple method to establish the mathematical models of hobbing and power skiving tools, and the proposed mathematical model with the following characteristics.
    The first is that the mathematical model of the external gear is calculated by the meshing of the rack and the gear. The 4 × 4 homogeneous coordinate transformation matrix is used to design the hobbing cutter on the cylinder, and then the conjugate theory is used to solve the cutting edge surface equation of the hobbing cutter. Thus the surface equation can be seen hatch design variables, it will help to simplify the tool design process.
    The second feature is that, since the cutting edge of the powerful skiving tool is not a simple function, we define it as a 1 × 4 matrix. Then use 4 × 4 homogeneous coordinate transformation matrix to establish the position of the power skiving tool and the gear. So mathematical model of the powerful skiving tool will be established, and then the conjugate theory is used to solve the cutting edge surface equation of the powerful skiving tool. The parameter of the surface equations of power skiving tool design will be helpful to simplify the design process of the tool.
    Finally, We have established a 4 × 4 homogeneous coordinate transformation matrix with six degrees of freedoms. With the machining processing of hobbing method and the power skiving method, then we will ues the homogeneous coordinate conversion to solve the six variables. So the positions of hobbing and power skiving method while machining external gears will be found.

    摘要i Extended Abstractii 誌謝v 目錄vi 表目錄viii 圖目錄ix 符號說明x 第一章 研究目的及研究方法1 1.1 共軛理論2 1.2 齊次座標轉換表示法3 1.3 滾齒法文獻回顧8 1.4 強力刮齒法文獻回顧9 1.5 各章介紹10 第二章 齒輪的嚙合12 2.1齒輪的基本原理12 2.2齒輪的構造13 2.3斜齒齒條的數學模式16 2.4斜齒輪和斜齒條的嚙合20 第三章 滾齒刀之數學模型與位姿23 3.1滾齒刀刃口形狀23 3.2直線齒型滾齒刀的數學模式25 3.3直線齒型滾齒刀的位姿29 第四章 強力刮齒刀的數學模型與位姿35 4.1 強力刮齒法35 4.2 強力刮齒法的工作原理36 4.3 強力刮齒刀之數學模式39 第五章 滾刀及強力刮齒刀的曲面方程式45 5.1 求解強力刮齒刀之變數46 5.2求解滾齒刀之變數49 5.3 滾齒刀與強力刮齒刀之相關性50 第六章 結論與未來展望52 6.1 結論52 6.2 未來展望53 參考文獻54

    [1]KHK小原齒輪工業(株),齒輪技術資料。
    [2]Stephen, P. Radzevich, Gear Cutting Tool: Fundamentals of Design and Computation, Taylor & Francis, 2010.
    [3]R. H. Hsu, Z, H. Fong, “Novel variable-tooth-thickness hob for longitudinal crowning in the gear-hobbing process,” Mechanism and Machine Theory 46, 1084-1096 (2011).
    [4]R. H. Hsu, H. H. Su, “Tooth contact analysis for helical gear pairs generated by a modified hob with variable tooth thickness,” Mechanism and Machine Theory 71, 40-51 (2014).
    [5]A. Antoniadis, “Gear skiving—CAD simulation approach,” Computer-Aided Design 44, 611–616 (2012).
    [6]L. Xia, Y. Liu, D. Li, J. Han, “A linkage model and applications of hobbing non-circular helical gears with axial shift of hob,” Mechanism and Machine Theory 70, 32-44 (2013).
    [7]王秩信,“用齒輪滾刀代替專用滾刀加工蝸輪”,機械工業雜誌。四川省機械工業局編,齒輪刀具設計理論基礎,機械工業出版社,中華民國七十一年。
    [8]F. L. Litvin, Q. Fan, D. Vecchiato, A. Demenego, R. F. Handschuh, and T.M. Sep, “Computerized generation and simulation of meshing of modified spur and helical gear manufactured by shaving,” Computer methods in applied mechanics and engineering 190, 5037-5055 (2001).
    [9]F. L. Litvin, I. G. Perez, K.Yukishima, A. Fuentes, and K. Hayasaka, “Generation of planar and helical elliptical gears by application of rack-cutter, hob, and shaper,” Computer methods in applied mechanics and engineering 196, 4321-4336 (2007).
    [10]H. Chiu, Y.Umezawa, Y. Ariura, “An improvement of the tooth profile accuracy of a hobbed gear by adjusting the hob eccentricity,” JSME International Journal Series III, 1 (32), 131-135 (1989).
    [11]I. S. Lazebnilk, “Minimizing tooth profile errors of hobs,” JSME International Journal Series C: Soviet Engineering Research, 1 (4), 109-111 (1990).
    [12]K. D. Bouzakis, A. Antoniadis, “Optimizing of diagonal shift in gear hobbing,” Ann. CRIP, 44, 75-79 (1995).
    [13]K. H. Chen, Z. H. Fong, “Computer simulation dor the cutting process of a CNC hobbing machine,” Chinese Society of Mechanism and Machine Theory Conference, 2009, 154-161 (2009).
    [14]H. J. Stadtfeld, “Power Skiving of Cylindrical Gears on Different Machine Platforms,” Gear technology, January February, 52-62 (2014).
    [15]Lao, Q.I., Liu B., Summary of Skiving Tool, Eng 48(1):7–9, 2014.
    [16]Stadtfeld, H.J., Power skiving of cylindrical gears on different machine platforms, Gear Technology, 31 (1) 52-62, 2014.
    [17]Kobialka, C., “Contemporary gear pro-machining solutions,” AGMA Tech Pap, 12FTM11, 2012.
    [18]C. Y. Tsai, “Mathematical model for design and analysis of power skiving tool for involute gear cutting,” Mechanism and Machine Theory 101, 195-208 (2016).
    [19]Erkuo Guo, Rongjing Hong , Xiaodiao Huang and Chenggang Fang, “Research on the design of skiving tool for machining involute gears,” Journal of Mechanical Science and Technology 28 (12) 5107~5115 (2014).
    [20]Erkuo Guo, Rongjing Hong , Xiaodiao Huang and Chenggang Fang, “Research on the cutting mechanism of cylindrical gear power skiving,” Int J Adv Manu Technol 79, 541-550 (2015).
    [21]M. Kojima, “Gear skiving of involute internal spur gear (part 1: on the tooth profile),” Bull JSME 17(106) 511-518 (1974).
    [22]S. Volker, K. Chirsttoph, A. Hermann, “3D-FEM modeling of gear skiving to investigate and chip formation mechanisms,” Adv Mater Res 223:46–55 (2011).
    [23]D. Spath, A. Huhsam, “Skiving for high-performance machiningof periodic structures,” Ann CIRP 51, Paris (2002).
    [24]M. Hartmut, V. Olaf, “Robust method for skiving and corresponding apparatus comprising a skiving tool,” US Patent 20120328384A (2012).
    [25]M. Hartmut, V. Olaf, “Semi-completing skiving method and device having corresponding skiving tool for executing a semi-completing skiving method,” US Patent 20130071197A1 (2013)

    下載圖示 校內:2022-07-01公開
    校外:2022-07-01公開
    QR CODE