| 研究生: |
許瑋婷 Syu, Wei-Ting |
|---|---|
| 論文名稱: |
從肺部上皮細胞增生及免疫發炎反應之角度探討適用於不同粒徑石英粉塵之暴露評估指標 From the lung epithelial proliferation and immune inflammatory response aspects to assess a suitable exposure metric for quartz dusts of different particle sizes |
| 指導教授: |
蔡朋枝
Tsai, Perng-Jy |
| 共同指導教授: |
張志欽
Chang, Chih-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 結晶型游離二氧化矽 、粒徑 、質量濃度 、表面積濃度 、個數濃度 、暴露指標 |
| 外文關鍵詞: | Crystalline free silica, particle size, mass concentration, surface area concentration, number concentration, exposure metric |
| 相關次數: | 點閱:124 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目為評估不同粒徑石英粉塵之質量濃度、表面積濃度、和個數濃度和肺部上皮細胞增生和免疫發炎反應之關係,並探討適用於不同粒徑石英微粒之最合適暴露評估指標。本研究利用液相沉積裝置(Liquid sedimentation device)將石英粉塵分為三粒徑分布,並以掃描式電子顯微鏡(Scanning electron microscopy;SEM)和穿透式電子顯微鏡(Transmission electron microscopy;TEM)分析石英粉塵之實際粒徑,結果發現三粒徑分布粒數中數粒徑(CMD)依序為0.98 μm、2.61 μm、和8.79 μm,且GSD均小於1.62。各測試微粒粒徑分布的石英含量範圍介於97.5 %及118.0 %,SD均介於 0.04和0.32之間。石英粉塵中總金屬含量為0.84 %,SD均介於 0.0032和0.79之間。本研究以MTT細胞增生分析評估石英粉塵促進肺部上皮細胞A549增生反應,而肺部免疫發炎反應則使用RAW264.7細胞株之細胞激素TNF-alpha和TGF-beta,分別作為急性和促纖維化之發炎指標。前述之指標均使用ELISA進行分析。當細胞暴露於不同粒徑之石英微粒後,發現粒徑愈小引起之上皮細胞增生情形和急性發炎反應愈嚴重,但就致TGF-beta的生成而言,2.61 μm之微粒則較其他粒徑嚴重之。前述結果說明不同粒徑之石英在造成肺部疾病上佔有不同角色。本研究進一步評估CMD分別為0.98 μm、2.61 μm、和8.79 μm之石英粉塵於不同暴露指標下其生物劑量反應關係。就上皮細胞增生而言,以質量濃度為暴露指標時之EC50分別為26.5、26.7、和25.7;表面積濃度為暴露指標時之EC50分別為5.11、1.60、和0.46 cm2;個數濃度為暴露指標時之EC50則分別為39.5×10^6、0.72×10^6、和0.014×10^6#。就急性發炎反應而言,以質量濃度為暴露指標時之EC50分別為67.4、66.2、和60.6 μg;表面積濃度為暴露指標時之EC50分別為52.1、15.9、和4.33 cm2;個數濃度為暴露指標時之EC50則分別為則分別為172×10^6、2.69×10^6、和0.056×10^6#。就促纖維化反應而言,以質量濃度為暴露指標時之EC50分別為23.9、26.3、和30.8 μg;表面積濃度為暴露指標時之EC50分別為24.4、6.30、和2.20 cm2;個數濃度為暴露指標時之EC50則分別為143×10^6、2.84×10^6、和0.065×10^6#。本研究並經由全部粒徑之劑量反應關係探討適用於石英微粒之最合適暴露評估指標,質量濃度、表面積濃度、和個數濃度暴露指標與上皮細胞增生之相關性(R2)分別為0.999、0.905、和0.205;與急性發炎反應之相關性(R2)分別為0.998、0.812、和0.526;與促纖維化反應之相關性(R2)分別為0.992、0.887、和0.491。綜合前述,本研究發現評估不同粒徑結晶型二氧化矽健康危害之最合適暴露指標為質量濃度。
The objectives of this study are to assess the relationships between mass, surface area, and number concentrations for quartz of different particle sizes and lung epithelia cell proliferation and inflammatory response, and to determine the most suitable exposure metric for quartz exposures. The quartz dusts were separated into three particle sizes using a liquid sedimentation system, and the separated quartz dust samples were analyzed using SEM (Scanning electron microscope) and TEM (Transmission electron microscopy) to determine their true particle size distributions. By count median diameters (CMD), three particle size distributions of quartz were found, 0.98 μm, 2.61 μm, and 8.79 μm, and the corresponding GSDs were consistently less than 1.62. All three tested particles had 97.5-118.0 % (SD= 0.04-0.32) of quartz contents, and total metal content less than 0.84 %, (SD= 0.0032-0.79). This study applied MTT cell proliferation assay to determine the proliferation index of pulmonary A549 cells and ELISA measurement of TNF-alpha and TGF-beta production of RAW264.7 cell as the index of acute and fibrogenic response. All of the above indices were assayed using ELISA. While cells were treated with quartz powders of different particle sizes, and the results show that the smaller quartz particle in size, caused the stronger cell proliferation and inflammatory response, and quartz with particle size 2.61 μm was found with the highest fibrogenic response than that of other particle sizes. The above results suggest that quartz of different particle sizes might play the different roles in causing diseases. This study further evaluated the biological-based dose-response relationship for quartz of different particle sizes while testing against difference exposure metrics. For assaying cell proliferation of CMD 0.98 μm, 2.61 μm and 8.79 μm of quartz dusts, EC50 would be 26.5, 26.7 and 25.7 ug, respectively, using mass concentration as exposure metric. EC50 would be 5.11, 1.60 and 0.46 cm2, respectively, using surface area concentration as exposure metric. EC50 would be 39.5×10^6, 0.72×10^6 and 0.014×10^6#, respectively, using surface area concentration as exposure metric. As obtained from the acute inflammation results, the use of mass concentration would result in EC50 of 67.2, 66.2, and 60.6 μg, respectively; the use of surface area concentration would result in EC50 of 52.1, 15.9, and 4.33 cm2, respectively; the use of number concentration would result in EC50 of 172×10^6, 26.9×10^6, and 0.056×10^6#, respectively. Based on the fibrogenic response results, the mass concentration would result in EC50 of 23.9, 26.3, and 30.8 μg, respectively; the surface area concentration would result in EC50 of 24.4, 6.30, and 2.20 cm2, respectively; the number concentration would result in EC50 of 143×10^6, 2.84×10^6, and 0.065×10^6#, respectively. This study further applied exposure dose-cummulative response to determine the most suitable exposure metric for assessing quartz exposures. The R2 for the mass concentration, surface area concentration, and number concentration in relation to cell proliferation were 0.999, 0.905, and 0.205, respectively; they were 0.998, 0.812, and 0.526, respectively, in realtion to acute inflammation; they were 0.992, 0.887, and 0.491, respectively, in relation to fibrogenic response. The above results clearly suggest that the mass concentration is the most suitable exposure metric to assess the health-risks associated with crystalline silica exposures.
Adamson IY, Young L, Bowden DH. Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. American Journal of Pathology. 130:377-383, 1988.
Ainsworth SM, Parobek PS, Tomb TF. Determining the quartz content of respirable dust by FTIR. Mine Safety and Health Administration Information Report 1-12, 1989.
Albrecht C, Knaapen AM, Becker A, Hohr D, Haberzettl P, Schooten F, Borm PJA, Schins RPF. The crucial role of particle surface reactivity in respirable quartz-induced reactive oxygen/nitrogen species formation and APE/Ref-I induction in rat lung. Respiratory Res 6:129-144, 2005.
Althouse RB, Bang KM, Castellan RM. Tuberculosis comortality with silicosis-United States, 1979-1991. Appl Occup Environ Hyg 10(12):1037-1041, 1995.
American Conference of Governmental Industrial Hygienists (ACGIH). Silica, crystalline-quartz. The documentation of the threshold limit values and biological exposure indices. 7th ed. Cincinnati, OH:American Conference of Governmental Industrial Hygienists, 2001.
American Conference of Governmental Industrial Hygienists (ACGIH). TLV and BEI threshold limit values for chemical substances and physical agents and biological exposure indices. ACGIH, Cincinnati, 2000.
American Conference of Governmental Industrial Hygienists (ACGIH). TLV and BEI threshold limit values for chemical substances and physical agents and biological exposure indices. ACGIH, Cincinnati 73-76, 2004.
American Thoracic Society (AST). Adverse effects of crystalline silica exposure. Am J Respir Crit Care Med 155:761-768, 1997.
Ann C, David B, Paul B, Ken D. Inflammation effects of respirable quartz collected in workplaces versus standard DQ12 quartz: particle surface correlates. Toxicological Sciences 63:90-98, 2001.
Astrand R and Rodahl K. Textbook of Work Physiology-physiological bases of exercise. McGraw-Hill Internaional Editions, 1986.
Blanco D, Vicent S, Elizegi E, Pino I, Fraga MF, Esteller M, Saffiotti U, Locanda F, Montuenga LM. Altered expression of adhesion molecules and epithelial-mesenchymal transition in silicainduced rat lung carcinogenesis. Lab Invest 84:999-1012, 2004.
Bolton RE, Vincent JH, Jones AD, Addison J, Beckett ST. An overload hypothesis for pulmonary clearance of UICC amosite fibres inhaled by rats. Br J Ind Med 40:264-272, 1983.
Border WA and Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286-1292, 1994.
Brain JD. Lung Macrophages: How many kinds are there? What do they do? Am Rev Respir Dis 137:507-509, 1988.
Brooke T and Mossman Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157:1666-1680, 1998.
Castranova V, Kang JH, Moore MD, Pailes WH, Frazer DG, Schwegler-Berry D. Inhibition of stimulant-induced activation of phagocytic cells with tetrandrine. Journal of Leukocyte Biology 50:412-422, 1991.
Castranova V, Vallyathan V, Wallace WE. Silica and silica induced lung diseases. Boca Raton, FL:CRC Press, 1996.
Cherry NM, Burgess GL, Turner S, McDonald JC. Crystalline silica and risk of lung cancer in the potteries. Occup Environ Med 55:779-785, 1998.
Choi SJ, Oh JM, Choy JH. Toxicological effects of inorganic nanoparticles on human lung cancer A549 cells. Journal of Inorganic Biochemistry 103:463-471, 2009.
Churg A, Braue M. Ambient atmospheric particles in the airways of human lungs. Ultrastructure pathology 24:353-361, 2000.
Daniel R. et al. Nitric oxide downregulates lung macrophage inflammation cytokine production. Ann Thorac Surg 66:313-317, 1998.
Dasch J, D’Arcy J, Gundrum A, et al. Characterization of fine particles from machining in automotive plants. J Occup Environ Hyg 2:609-25, 2005.
David BW, Thomas RW, Vicki LC, Kenneth LR, Christie MS. Pulmonary Bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicological Sciences 95:70-280.
Davies CN. 1979. Particle fluid interaction. J Aerosol Sci 10:477-513, 2007.
Davis GS, Pfeiffer LM, Hemenway D. Persistent overexpression of interleukin-1 beta and tumor necrosis factor-alpha in murine silicosis. J Environ Pathol Toxicol Oncol 17:99-114, 1998.
Deshpande PK, Narayanan BE, Lehnert. Silica-induced generation of extracellular factor(s) increases reactive oxygen. Toxicological Sciences 67(2):275-283, 2002.
Donaldson K, Bolton RE, Jones AD, Brown GM, Robertson MD, Slight J, Cowie H, Davis JMG. Kinetics of the bronchoalveolar leukocyte response in rats during exposure to equal airborne mass concentration of quartz, chrysotile asbestos or titanium dioxide. Thorax 43:159-162, 1988.
Driscoll KE, Deyo LC, Carter JM, Howard BW, Hassenbein DG, Bertram TA. Effects of particles exposure and particle-elicited inflammation cells on mutation in rat alveolar epithelial cells. Carcinogenesis 18:423-430, 1997.
Evans DE, Heitbrink WA, Slavin TJ, Peters TM. Ultrafine and respirable particles in an automotive grey iron foundry. Ann Occup Hyg 1-13, 2004.
Farmer VC. The infrared spectra of minerals (mineralogical society monograph 4). London: Mineralogical Society, 1974.
Fine A and Goldstein RH. The effect of transforming growth factor on cell proliferation and collagen formation by lung fibroblasts. J Biol Chem 262:3897-3902, 1987.
Fubini B and Hubbard A. Serial Review: Role of Reactive Oxygen and Nitrogen Species (ROS/RNS) in Lung Injury and Diseases. Free Radical Biology and Medicine 34:1507-1516, 2003.
Fubini B, Fenoglio I, Elias Z, Poirot O. On the variability of the biological responses to silicas: effect of origin, crystallinity and state of the surface on the generation of reactive oxygen species and consequent morphological transformations in cells. J Environ. Pathol Toxicol Oncol 20:87-100, 2001.
Fubini B, Fenoglio I,Martra G, Ceschino R, Tomatis M, Cavalli R, Trotta M. An overview on the toxicity of inhaled nanoparticles. Surface Chemistry in Biomedical and Environmental Science 241-252, 2006.
Fubini B. Surface chemistry and quartz harzard. Ann Occup Hyg 42:521-530, 1998.
Fujimura N. Pathology and pathophysiology of pneumoconiosis. Curr Opin Pulm Med 6(2):140-4, 2000.
Gerlofs-Nijland ME, Boere AJF, Leseman D, Dormans J, Sandström T, Salonen RO, Bree LV, Cassee FR. Effects of particulate matter on the pulmonary and vascular system time course in spontaneously hypertensive rats. Particle and Fibre Toxicology 2:2, 2005.
Ghio AJ, Kennedy TP, Whorton AR, Crumbliss AL, Hatch GE, Hoidal JR. Role of surface complexed iron in oxidant generation and lung inflammation induced by silicates. Am J Physiol 263:L511-L518, 1992.
Hefland RB, Schwarzel PE, Johansen BV, Myran T, Uthus N, Refsnes M. Silica-induced cytokine release from A549 cells: importance of surface area versus size. Human and Experimental Toxicology 20:46-55, 2001.
Hessel PA, Sluis-Cremer GK, Hnizdo E, Faure MH, Thomas RG, Wiles FJ. Progression of silicosis in relation to silica dust exposure. Ann Occup Hyg 32(Suppl 1):689–696, 1988.
Hetland RB, Casseeb FR, Refsnesa M, Schwarzea PE, Lag M, Boere AJF, Dybing E. Release of inflammatory cytokines, cell toxicity and apoptosis in epithelial lung cells after exposure to ambient air particles of different size fractions. Toxicology in Vitro 18:203-212, 2004.
Hill DJ, Strain AJ, Elstow SF, et al. Bi-functional action of transforming growth factor- on DNA synthesis in early passage human fetal fibroblasts. J Cell Physiol 128: 322-328, 1986.
Huaux F. New developments in the understanding of immunology in silicosis. Curr Opin Allergy Clin Immunol 7(2): 168-173, 2007.
Hughes JM, Weill H, Rando RJ, Shi R, McDonald AD, McDonald JC. Cohort mortality study of North American industrial sand workers. II. Case-referent analysis of lung cancer and silicosis deaths. Ann Occup Hyg 45:201-207, 2001.
International Agency for Research on Cancer. "IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans: Silica and some silicates." Vol. 42. World Health Organization, International Agency for Research on Cancer. Lyon, France, 1997.
John H, Wiessner, Neil S, Mandel, Peter G, Sohnle, Gretchen S, Mandel. Effect of Particle Size on Quartz-Induced Hemolysis and on Lung Inflammation and Fibrosis. Experimental Lung Research 15801-15812, 1989.
Johnston C, Driscoll KE, Finkelstein JN, Baggs R, O'Reill M, Carter J, Gelein R, Oberdorster G. Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. Toxicol Sci 56:405-413, 2000.
Jones AD, McMillan C, Johnston AM, McIntosh C, Cowie H, Parker I, Donaldson K. Animal Studies to Investigate the Deposition and Clearance of Inhaled Mineral Dusts. Final Report on CEC Contract 7248/33/026. Edinburgh: IOM. 1988.
Kaewamatawong T, Kawamura N, Okajima M, Sawada M, Morita T, Shimada A. Acute pulmonary toxicity caused by exposure to colloidal silica: particle size dependent pathological changes in mice. Toxicologic Pathology 33:745-751, 2005.
Kalluri R, Neilson ED. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776-1784, 2003.
Knaapen AM, Albrecht C, Becker A, Hohr D, Winzer A, Haenen GR, Borm PJA, Schins RPF. DNA damage in lung epithelial cells isolated from rats exposed to quartz: role of surface reactivity and neutrophilic inflammation. Carcinogenesis 23:1111-1120, 2002.
Koskela RS, Klochkars M, Laurent H, Holopainen M. Silica dust exposure and lung cancer. Scand. J. Work Environ. Health 20(6): 407-416, 1994.
Kubota Y, Takahashi S, Matsuoka O. Dependence on particle size in the phagocytosis of latex particles by rabbit alveolar macrophages cultured in vitro. J Toxicol Sci 8(3):189-95, 1983.
Liu X, He B, Su L. The effect of transforming growth factor-beta on collagen expression by human embryonic fibroblasts [in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi 18:287-289, 317-318, 1995.
Liu YJ. Rapid activation of PDGF-A and -13 expression at sites of lung injury in asbestos-exposed rats. Am J Respir Cell Mol Biol 17:129-140, 1997.
Madsen FA, Rose MC, Cee R. Review of quartz analytical methodologies: present and future needs. App Occup an Envir Hyg 10(12):991-1002, 1995.
Marnettl J. Oxyradicals and DNA damage. Carcinogenesis 21:361-370, 2000.
Massague J. The transforming growth factor-beta family. Annual Review of Cell Biology 6:597-641, 1990.
Maynard AD. Estimating aerosol surface area from number and mass concentration measurements. Ann Occup Hyg 47:123-44, 2003.
McDonald JC, McDonald AD, Hughes JM, Rando RJ, Weill H. Mortality from lung and kidney disease in a cohort of North American industrial sand workers: an update. Ann Occup Hyg 49:367-373, 2005.
Michael AM, Michael SK, Michael TB. Ultrafine Beryllium number concentration as a possible metric for chronic beryllium disease risk. Applied Occupational and Environmental Hygiene 16(5):631-638, 2001.
Miller K, Handfieled RIM, Kagan E. The effects of different mineral dusts on the mechanism of phagocytosis: a scanning electron microscope study. Environ Res 15:139-154, 1978.
Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K. The pro-inflammation effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occ and Environ Med 64:609-615, 2007.
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods 65 (1-2): 55-63, 1983.
Mossman BT and Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157:1666-1680, 1998.
Muhle H, Bellmann B, Heinrich U. Overloading of lung clearance during chron exposure of experimental animals to particles. Ann. Occup Hyg 32(suppl. 1):141-147, 1988.
National Institute for Occupational Safety and Health (NIOSH). Work-related lung disease surveillance report. Cincinnati, OH: U.S. department of health and human services, public health service, centers for disease control and prevention, national institute for occupational safety and health, DHHS (NIOSH) Publication 96-134, 1996a.
National Institute for Occupational Safety and Health. “Health effect of occupational exposure to respirable crystalline silica.” Department of Health and Human Service, 2002.
Nenadic LM, Crable JV. Application of X-Ray diffraction to analytical problems of occupation health. JInd Hyg Assoc Am 32:529-539, 1971.
Nolan RP, Langer AM, Harington JS, Oster G, Selikoff U. Quartz hemolysis as related to its surface functionalities. Environ Res 26:503-520, 1981.
Oberdörster GJ, Ferin PE, Morrow. Volumetric loading of alveolar macrophages (AM): A possible basis for diminished AM-mediated particle clearance. Experimental Lung Research 18:87-104, 1992.
Olbruch H, Seemayer NH, Wilhelm M. Supernatants from quartz dust treated human macrophages stimulate cell proliferation of different human lung cells as well as collagen synthesis of human diploid lung fibroblasts in vitro. Toxicol Lett 96:85-95, 1998.
Olmstead AW and LeBlanc GA. Toxicity assessment of environmentally relevant pollutant mixtures using a heuristic model. Integr. Environ Assessm Manag 1:114-122, 2005.
Parkes WR. Chronic bronchitis, airflow obstruction and emphysema. In occupational lung disorders. 3rd ed. Butterworth Heinemann, Ltd. London. 222-237, 1994.
Peters TM, HeitbrinkWA, Evans DE, et al. The mapping of fine and ultrafine particles in an engine machining and assembly facility. Ann Occup Hyg 50:249-57, 2006.
Raghu G, Masta S, Meyers D, et al. Collagen synthesis by normal and fibrotic human lung fibroblasts and the effect of transforming growth factor-. Am Rev Respir Dis 140:95-100, 1989.
Ramachandran G, Paulsen D, Watts W, et al. Mass, surface area and number metrics in diesel occupational exposure assessment. J Environ Monit 7:728-35, 2005.
Robeldo R and Mossman B. Cellular and molecular mechanisms of asbestos -induced fiblosis. J Cell Physiol 180:158-166, 1999.
Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell 46:155-169, 1986.
Schins RPF, Knaapen AD, Cakmak GD, Shi T, Weishaupt C, Borm PJA. Oxidant-induced DNA damage by quartz in alveolar epithelial cells. Mutat Res 517:77-86, 2002.
Seagrave JC, Nikula KJ. Multiple modes of responses to air pollution particulate materials in A549 alveolar type II cells. Inhalation Toxicology 12(Suppl 4):247-260, 2000.
Seiler F, Re`hn B, Rehn S, Bruch J. Different toxic, fibrogenic and mutagenic effects of four commercial quartz flours in the rat lung. Int J Hyg Environ Health 207:115-124, 2004.
Sherson D, Svane O, Lynge E. Cancer incidence among foundry workers in Denmark. Arch Environ. Health 46:75-81, 1991.
Shull MM, Ormsby I, Kier AB, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699, 1992.
Sime PJ, Marr RA, Gauldie D, et al. Transfer of tumor necrosis factor- to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-beta1 and myofibroblasts. Am J Pathol 153:825-832, 1998.
Spiethoff VA, Wesch H, Wegener K, Klimisch HJ. The effects of Thorotrast and quartz on the induction of lung tumors in rats. Health Phys 63(1): 101-110, 1992.
Steenland K, Mannetje A, Boffetta P, Stayner L, Attfield M, Chen J, Dosemeci M, DeKlerk N, Hnizdo E, Koskela R, Checkoway H. IARC. Pooled exposure-response analyses and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multicentre study. Cancer Causes Control 12(9): 773-784, 2001.
Stuart BO. Deposition and clearance of inhaled particles. Environ Health Perspect 5369-390, 1984.
Theerayuth K, Natsuko K, Mina O, Masumi S, Takehito M, Akinoris. Acute Pulmonary Toxicity by Exposure to Colloidal Silica: Particle Size Dependent Pathoological Changes in Mice. Toxicologic Pathology 33:745-751, 2005.
Tran CL, Buchanan D, Cullen RT, et al. Inhalation of poorly soluble particles. II. Influence Of particle surface area on inflammation and clearance 1. Inhal Toxicol 12:1113-26, 2000.
Tran CL, Jones AD, Donaldson K. Overloading of particles and fibres. Ann Occup Hyg 41(suppl. 1):237-243, 1997.
U.S. EPA. Ambient levels and noncancer health effects of inhaled crystalline and amorphous Silica: health issue assessment. 1, 1996.
Valavanidis A, Fiotakis K, Vlachogianni T. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26(4):339-62, 2008.
Vallyathan V, Castranova V, Pack D, Leonard S, Shumaker J, Hubbs AF, Shoemaker DA, Ramsay DM, Pretty JR, Mclaurin JL, Khan A, Teass A. Freshly fractured quartz inhalation leads to enhanced lung injury and inflammation in rats. Am J Respir Crit Care Med 152:1003-1009, 1995.
Warheit DB, Hansen JF, Yuen IS, Kelly DP, Snajdr SI, Hartsky MA. Inhalation of concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation. Toxicol Appl Pharmacol 145(1):10-22, 1997.
Warheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM. Pulmonary bioassay studies with nanoscale and fine-Quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicological sciences 95(1):270-280, 2007.
Weisheng L, Yue-wern H, Xiao-Dong A, Yinfa M. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology 217:252-259, 2006.
Wilbourn JD, McGregor DB, Partensky C, Rice JM. IARC reevaluates silica and related substances. Environ Health Perspect 105:756-759, 1997.
William JM. Issue and controversy: The measurement of crystalline silica; review Papers on analytical methods. Issue and controversy, 1999.
Yamano Y, Kagawa J, Hanaoka T, Takahashi T, Kasai H, Tsugane S, Watanabe S. Oxidative DNA damage induced by silica in vivo. Environ Res 69:102-107, 1995.
Yang HN, Bocchetta M, Kroczynska B, et al. TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappa B-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci USA 103:10397-10402, 2006.
Yassin A, Yebesi F, Tingle R. Occupational exposure to crystalline silica dust in the United States, 1988-2003. Environmental Health Perspectives 113:3, 2005.
Zhang Z, Shen HM, Zhang QF, Ong CN. Involvement of oxidative stress in crystalline silica-induced cytotoxicity and genotoxicity in rat alveolar macrophages. Environ. Res Sect A 82:245-252, 2000.
王執明,田沛霖,靳文潁,石東生;地區工業用礦石游離二氧化矽含量調查報告,行政院勞工委員會,台灣,1989。
王執明;肺症所關切的礦石-矽石類礦物,行政院勞工委員會,台灣,1989。