簡易檢索 / 詳目顯示

研究生: 張桂敏
Teo, Gui-Min
論文名稱: 利用陽性-陰性離子型界面活性劑系統合成各種新奇型態中孔洞氧化矽
Synthesis of Mesoporous Silica in Various Novel Morphologies Using Cationic-Anionic Binary Surfactant Mixture
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 77
中文關鍵詞: 中孔洞氧化矽離子型界面活性劑生物成礦
外文關鍵詞: catanionic mixtures, biomineralization, silica
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機-無機複合材料,是經由分子自組裝過程而形成。分子自組裝的行為普遍存在於生物系統中,是各種複雜生物結構形成的基礎。本研究將此觀念應用於合成奈米結構材料,期盼能合成出與自然界矽藻相似的型態,藉此了解自然界生物成礦的原理。

    本研究所選用的有機物為界面活性劑,無機物來源為易溶於水的矽酸鈉溶液。由界面活性劑化學得知,陽性-陰性離子型界面活性劑所組成的系統,可形成各種微胞結構和介尺度液晶相,適合作為合成中孔洞氧化矽的多元化模板。本研究採用陽離子型界面活性劑 (CnTMAX,n = 14-18,X = Br或Cl)及陰離子型界面活性劑(SDS)所形成的混合型界面活性劑系統作為有機模板,結合低濃度的矽酸鈉(Sodium Silicate)溶液在pH 2及近室溫(40℃)條件下,藉由調控陽性-陰性離子型界面活性劑間組份比(SDS/CTAB莫耳比,S)製備各種新奇型態的中孔洞氧化矽材料。

    實驗結果依照氧化矽的型態分為三部份:一、微米尺度的花瓣型氧化矽,其型態的特殊及絢麗可媲美自然界矽藻的型態;二、長達數百微米的大柱狀氧化矽,其尺度之大是分子自組裝系統中極少見的;三、纖維狀氧化矽,長度可達數微米,經由無機物水量的控制可選擇合成實心纖維狀(直徑50~150 nm)或空心纖維狀(直徑100~300 nm),有趣的是空心纖維狀氧化矽皆由環狀的奈米管所組成。

    本研究探討各種實驗變因對氧化矽型態的影響,包括氧化矽寡聚物尺度、合成pH值、有機模板系統的組份種類、各組份間比例、濃度、溫度、攪拌時間等。利用實驗結果,找出各種型態氧化矽最佳合成條件,並推測合成機制。

    本研究的合成方法簡單,產率高,實驗再現性良好。因此,本研究成果對於自然界生物成礦的形成機制及基礎理論,具有很高的參考價值。

    Organic-inorganic nanao-composite materials are formed via molecular self-assembly process. Molecular self-assembly behaviour generally exists in the living systems of complex structural forms. Extending the biomineralization concepts, in which organic molecules manipulate the growth of the inorganic systems, can inspire new biomimetic approaches for the synthesis of inorganic materials. Our approach is focused on understanding the biomineralization of the diatoms and proposed new strategies in preparation of mesoporous silicas in novel morphologies.

    It is well known that there are many different mesophases and morphologies in a mixture of cationic and anionic surfactants (i.e. catanionic surfactant). Therefore, the catanionic surfactants can be used as a versatile template to synthesize the mesoporous silica in various spectacular morphologies similar to the diatoms in nature. We utilized a mixture of alkyltrimethylammonium bromide (CnTMAX , n = 14-18 , X=Br or Cl) and sodium dodecylsulfate (SDS) as organic template, incorporated a highly-dilute sodium silicate solution at near room temperature (40℃) to synthesize mesoporous silica. The pH value of reaction was adjusted to 2.0. The morphology of silica is strongly dependent on SDS/CnTMAX molar ratio.

    According to the experimental results, there are three parts regarding to different silica morphologies in this thesis. In first part, flower-like mesoporous silicas in micro-size have been synthesized at SDS/CTAB = 0.20. Second part, hundred-micrometer mesoporous silica pillars with diameter in tens micrometer was prepared at SDS/CTAB = 0.50. This morphology in such scale is seldom found among the mesoporous silica formed from the self-assembling of surfactant and silica. Third part, the mesoporous silica fibers and tubes with length in few microns were generated at SDS/CTAB = 0.35. Silica fibers (diameter: 50~150 nm) or silica tube (diameter: 100~300 nm) can be selected by control the water content of the synthetic compositions. Interestingly, the nanochannel’s direction in the tubes is perpendicular to the longitudinal direction of the tubes to avoiding the contact between the hydrophobic tails and water.

    In addition, we also explored variation of silica morphologies by changing a series of experimental conditions including pH value, CTAB/SDS molar ratio, surfactant concentration, temperature, stirring rate and so on. Using the experimental result, we tried to find out the best synthesis condition for the mesoporous silica in the desired morphology, and extrapolation the synthesis mechanism.

    In brief, CnTMAX/SDS catanionic surfactants can be used as a new template to prepare many spectacular mesoporous silicas, which provide more information to understand the biomineralization in nature. This synthetic method is simple, and the results are reproducible. Therefore, our research results have high referencing values for understanding biomineralization concepts and theories.

    第一章 緒論 1.1 研究動機與合成概念 1 1.2 生物成礦 2 1.3 中孔洞氧化矽材料的發展與研究簡介 3 1.4 界面活性劑簡介 5 1.4.1 界面活性劑的分子結構 5 1.4.2 界面活性劑的分類 5 1.4.3 界面活性劑在水中的行為與堆積參數的關係 6 1.4.4 表示界面活性劑組成與結構的相圖 8 1.4.5 陽性-陰性離子型界面活性劑所組成的系統 10 1.5 矽酸鹽的基本概念 11 1.6 研究成果簡介及未來研究方向 13 第二章 實驗部份 2.1 化學藥品 15 2.2 樣品的合成方法 16 2.2.1中孔洞氧化矽的合成步驟 16 2.3 產物的鑑定 18 2.3.1 光學顯微鏡 18 2.3.2 熱重分析儀 18 2.3.3 掃描式電子顯微鏡 18 2.3.4 穿透式電子顯微鏡 18 2.3.5 氮氣等溫吸附-脫附測量 19 2.3.6 X-射線粉末繞射光譜 19 第三章 花瓣型中孔洞氧化矽之合成研究 3.1 研究動機及實驗設計 20 3.2 結果與討論 21 3.2.1 花瓣型中孔洞氧化矽的合成與鑑定 21 3.2.2 SDS/CTAB莫耳比(S)對花瓣型中孔洞氧化矽型態的影響 25 3.2.3 水含量對花瓣型中孔洞氧化矽型態的影響 26 3.2.3.1 有機模板系統的水含量 26 3.2.3.2 無機系統的水含量 26 3.2.4 合成pH值對花瓣型中孔洞氧化矽型態的影響 28 3.2.5 矽酸鈉含量對花瓣型中孔洞氧化矽型態的影響 28 3.2.6 合成溫度對花瓣型中孔洞氧化矽型態的影響 29 3.2.7 不同界面活性劑系統所合成的花瓣型中孔洞氧化矽 30 第四章 大柱狀中孔洞氧化矽之合成研究 4.1 研究動機及目的 34 4.2 結果與討論 34 4.2.1 大柱狀中孔洞氧化矽的合成與鑑定 34 4.2.2 應力對大柱狀中孔洞氧化矽的影響 39 4.2.3靜置天數對大柱狀中孔洞氧化矽型態的影響 40 4.2.4 合成pH值對大柱狀中孔洞氧化矽型態的影響 41 4.2.5 水含量對大柱狀中孔洞氧化矽型態的影響 42 4.2.5.1 有機模板系統的水含量 42 4.2.5.2 無機系統的水含量 43 4.2.6 合成溫度對大柱狀中孔洞氧化矽型態的影響 43 4.2.7 SDS/CTAB莫耳比(S)對大柱狀中孔洞氧化矽型態的影響 44 4.2.8 矽酸鈉含量對大柱狀中孔洞氧化矽型態的影響 45 4.2.9 攪拌時間(流場)對大柱狀中孔洞氧化矽型態的影響 46 4.2.10 由實驗結果推測大柱狀中孔洞氧化矽的合成機制 47 4.2.11 不同界面活性劑系統所合成的大柱狀中孔洞氧化矽 49 第五章 纖維狀中孔洞氧化矽之合成研究 5.1 研究動機及目的 52 5.2 結果與討論 53 5.2.1 纖維狀中孔洞氧化矽的合成與鑑定 53 5.2.2 水熱溫度對空心纖維狀中孔洞氧化矽結構的影響 59 5.2.3 無機系統水含量對纖維狀中孔洞氧化矽型態的影響 60 5.2.4 攪拌時間(流場)對纖維狀中孔洞氧化矽型態的影響 62 5.2.4.1 有機模板系統的水含量 62 5.2.4.2 無機系統的水含量 62 5.2.5 有機模板系統水含量對空心纖維狀中孔洞氧化矽型態的影響 64 5.2.6 合成pH值對空心纖維狀中孔洞氧化矽型態的影響 65 5.2.7 SDS/CTAB莫耳比(S)對空心纖維狀中孔洞氧化矽的影響 66 5.2.8 矽酸鈉含量對空心纖維狀中孔洞氧化矽型態的影響 67 5.2.9 合成溫度對空心纖維狀中孔洞氧化矽型態的影響 68 5.2.10 由實驗結果推測纖維狀中孔洞氧化矽的合成機制 69 5.2.11 不同界面活性劑系統所合成的纖維狀氧化矽 72 第六章 結論 73 參考文獻 76

    1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
    2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
    3. A. Sayari , Chem. Mater., 1996, 8, 1840.
    4. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
    5. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
    6. M. Hartmann, A. Popll , L. Kenvan, J. Phys. Chem., 1996,100, 9906.
    7. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal., 1994, 84, 69.
    8. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
    9. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
    10. C.-G. Wu, T. Bein, Chem. Mater., 1994, 266, 1109.
    11. Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
    12. W. Wang, S. Xie, W. Zhou and A. Sayari, Chem. Mater. 2004,16, 1756.
    13. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao, Angew. Chem., 2003, 115 , 3254.
    14. A. Vinu, V. Murugesan, M. Hartmann, Chem. Mater. 2003, 15, 1385.
    15. H. P. Lin, C. Y Tang and C. Y. Lin, J. Chin. Chem. Soc., 2002, 49, 981.
    16. V. Alfredsson and M. W. Anderson, Chem. Mater., 1996, 8, 1141.
    17. H. P. Lin and C. Y. Mou, Acc. Chem. Rev., 2002, 35, 927.
    18. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U Kwon, O. Terasaki, S.–E. Park and G. D. Stucky, J. Phys. Chem. B., 2002, 106, 2552.
    19. A. Bhaumik and S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691.
    20. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao, Angew. Chem. Int. Ed., 2001, 7, 1258.
    21. A. Walcarius, M. Etienne, B. Lebeau, Chem. Mater. 2003, 15, 2161.
    22. T. Yokoi, H. Yoshitake, T. Tatsumi, J. Mater. Chem. 2004, 14 , 951.
    23. J. M. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature, 2000, 48, 289.
    24. E. B. Erlein, Angew. Chem. Int. Ed. 2003, 42, 614.
    25. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. Xu, Angew. Chem. Int. Ed. 2003, 42, 413.
    26. E. W. Kaler, A. K. Murthy, B.E. Rodriguez, J. A. N. Zasadzinski, Science, 1989, 245, 1371.
    27. L. L. Brasher, K. L. Herrington, E. W. Kaler, Langmuir, 1995, 11, 4267.
    28. M. T. Yatcilla, K. L. Herrington, L. L. Brasher, E. W. Kaler, S. Chiruvolu, J. A. Zasadzinski, J. Phys. Chem. 1996, 100 , 5874.
    29. K. Tsuchiya, H. Nakanishi, H. Sakai, M. Abe, Langmuir, 2004, 20, 2117.
    30. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
    31. Dongyuan Zhao, Jianglin Feng, Qisheng Huo, Nicholas Melosh, Glenn H. Fredrickson, Bradley F. Chmelka, G. D. Stucky, Science 1998, 273,548.
    32. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids, 1985, 70, 301.

    下載圖示 校內:2009-07-10公開
    校外:2009-07-10公開
    QR CODE