簡易檢索 / 詳目顯示

研究生: 吳白龍
Wu, Pai-Lung
論文名稱: 功能梯度壓電楔形結構之面外電彈場分析
Analysis of Antiplane Electro-elastic Field in a Functionally Graded Piezoelectric Material Wedge
指導教授: 褚晴暉
Chue, Ching-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 89
中文關鍵詞: 奇異性階數電彈場功能梯度壓電材料楔形結構
外文關鍵詞: electro-elastic field, wedge structure, functionally graded piezoelectric material, singularity order
相關次數: 點閱:133下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的在於研究功能梯度壓電楔形結構受到面外剪力及面內電負載之電彈場問題。首先將材料性質假設為沿著半徑方向變化的連續函數,藉由梅林轉換及殘值定理的數學方法推導出在三種不同邊界條件A-A,B-B及A-B (flux-flux, potential-potential, flux-potential)下之奇異性階數及電彈場完整的形式及其物理意義。
    研究結果發現奇異性階數與非均質材料參數、楔形角及邊界條件等因素有關。當楔形邊界受到均佈剪力及均佈電荷作用下,在滿足特定條件時,奇異性可能由r的指數型式轉變成log(r)之型式。而位移、電位、應力及電位移之解析解可退化成功能梯度楔形、壓電楔形及彈性楔形等問題。

    The electro-elastic problems of a functionally graded piezoelectric material wedge under longitudinal shear load and inplane electrical load are studied in this paper. The material properties are assumed as a continuous function along radial direction. After applying Mellin transform and Residues theorem, the singularity orders, the physical quantities in the electro-elastic field are obtained in explicit forms for three different boundary conditions (flux-flux, potential-potential, flux-potential).
    The results show that the singularity orders depend strongly on the nonhomogeneous material parameter, the wedge angle and the boundary conditions. When one of the boundary edges is subjected to uniformly distributed shear force and/or electrical displacement starting from the apex of the wedge, the r-type singularity will be shifted to log(r)-type singularity if the special condition is satisfied. The analytical expressions of the displacements, electrical potentials, stresses, and the electrical displacements can be simplified to the degenerated problems such as the functionally graded elastic material wedge problem, the piezoelectric wedge problem, and the elastic wedge problem.

    摘要………………………………………………………Ⅰ 英文摘要…………………………………………………Ⅱ 誌謝………………………………………………………Ⅲ 目錄………………………………………………………Ⅳ 表目錄……………………………………………………Ⅶ 圖目錄……………………………………………………Ⅷ 符號說明…………………………………………………Ⅹ 第一章 緒論………………………………………………1 §1.1 前言…………………………………………………1 §1.2 文獻回顧……………………………………………4 §1.3 研究目的……………………………………………6 §1.4 本文架構……………………………………………6 第二章 理論基礎………………………………………8 §2.1 功能梯度材料……………………………………8 §2.1 壓電材料…………………………………………10 §2.3 壓電體楔形結構及其奇異性參數………………13 第三章 功能梯度壓電楔形結構之面外電彈場分析…16 §3.1 問題描述…………………………………………16 §3.2 基本公式…………………………………………17 §3.2.1 本構方程式 ……………………………………17 §3.2.2 退化情形 ………………………………………18 §3.2.3 廣義平面問題假設 ……………………………19 §3.3 邊界條件 A-A ……………………………………26 §3.3.1 面外集中剪力及面內集中電荷負載 …………26 §3.3.2 面外均佈剪力及面內均佈電荷負載 …………40 §3.4 邊界條件 B-B ……………………………………51 §3.5 邊界條件 A-B ……………………………………60 第四章 結果與討論……………………………………62 §4.1 不同邊界下奇異性階數之探討…………………62 §4.1.1 邊界條件A-A (集中負載) ……………………62 §4.1.2 邊界條件A-A (均佈負載) ……………………65 §4.1.3 邊界條件B-B …………………………………67 §4.1.4 邊界條件A-B …………………………………70 §4.2 面外位移場及電位場之探討……………………72 §4.2.1 邊界條件A-A (均佈負載) ……………………72 §4.3 面外應力場及面內電位移場之探討……………75 §4.3.1 邊界條件A-A (均佈負載) ……………………75 第五章 結論……………………………………………80 參考文獻…………………………………………………82 附錄A ……………………………………………………85 附錄B ……………………………………………………87

    [1] Tranter, C.J., 1948, The use of the Mellin transform in finding the stress
    distribution in an infinite wedge. Quarter Journal of Mechanics and
    Applied Mathematics, Vol. 1, pp. 125-130.

    [2] Williams, M.L., 1952, Stress singularities resulting from various boundary
    conditions in angular corners of plates in extension. Journal of Applied
    Mechanics 19 , pp. 526-528.

    [3] Bogy, D.B., 1971, Two edge-bonded elastic wedges of different materials
    and wedge angles under surface tractions. Transactions of the ASME,
    Journal of Applied Mechanics, Vol. 38, pp. 377-386.

    [4] Ma, C.C. and Hour, B.L., 1989, Analysis of dissimilar anisotropic wedges
    subjected to antiplane shear deformation. International Journal of Solids
    and structures, Vol. 25, pp. 1295-1309.

    [5] Xu, X.L. and Rajapakse, R.K.N.D., 2000, On singularities in composite
    piezoelectric wedge and junctions. International Journal of Solids and
    structures, Vol. 37, pp. 3253-3275.

    [6] Chen, B.J., Xiao, Z.M. and Liew, K.M., 2002, Electro-elastic stress
    analysis for a wedge-shaped crack interacting with a screw dislocation in
    piezoelectric solid. International Journal of Engineering Science, Vol.
    40, pp. 621-635.

    [7] Chen, B.J., Xiao Z.M. and Liew, K.M., 2002, A screw dislocation in a
    piezoelectric bi-material wedge. International Journal of Engineering
    Science, Vol. 40, pp. 1665-1685.

    [8] Chue, C.H. and Chen, C.D., 2003, Antiplane singularities of a bonded
    piezoelectric wedge. Archive of Applied Mechanics, Vol. 72,673-685.

    [9] Kassir, M.K., 1972, A note on the twisting deformation of a non-
    homogeneous shaft containing a circular crack, International Journal of
    Fracture Mechanics, Vol. 8, pp. 325-334.

    [10]Delale, F. and Erdogan, F., 1983, The crack problem for a nonhomogeneous
    plane, Transaction of the ASME, Journal of Applied Mechanics, Vol. 50,
    pp. 609-614.

    [11]Erdogan, F., 1985, The crack problem for bonded nonhomogeneous materials
    under antiplane shear loading, Transaction of the ASME, Journal of
    Applied Mechanics, Vol. 52, pp. 823-828.

    [12]Erdogan, F., Kaya, A.C. and Joseph, P.F., 1991, The crack problem in
    bonded nonhomogeneous materials, Transaction of the ASME, Journal of
    Applied Mechanics, Vol. 58, pp. 410-418.

    [13]Jin, Z. H. and Noda, N., 1994, Crack-tip singular fields in nonhomogeneous
    materials. Transactions of the ASME, Journal of Applied Mechanics, Vol.61,
    pp. 738~740.

    [14]Erdogan, F., 1995, Fracture mechanic of functionally graded materials.
    Composites Engineering , Vol. 5, pp. 753-770.

    [15]Yang, Y. Y., 1998, Stress Analysis in a joint with a functionally graded
    material under a thermal loading by using the Mellin transform method,
    International Journal Solids and Structures, Vol. 35, pp. 1261-1287.

    [16]Lawrence, S., 1989, An Antiplane Shear Crack in a Nonhomogeneous Elastic
    Material, Engineering Fracture Mechanics, Vol. 32, pp. 21-28.

    [17]Chue, C.H. and Ou, Y.L., 2006, Analysis of antiplane elastic field in
    nonhomogeneous material wedge structure. Journal of the Chinese Institute
    of Engineers, Vol. 29, pp. 125-133.

    [18]Alberto, C. and Marco, P., 2005, On the asymptotic stress field in
    angularly nonhomogeneous materials. International Journal of Fracture,
    Vol. 135, pp. 267-283.

    [19]Bever, M.B. and Duwez, P.E., 1972, Gradient in composite materials,
    Materials Science and Engineering, Vol. 10, pp. 1-8.

    [20]王保林, 韓傑纔, 張幸紅, 2003, 非均勻材料力學, 科學出版社, 北京.

    [21]Sneddon, I.,N., 1972, The use of integral transforms. McGraw, New York.

    下載圖示 校內:立即公開
    校外:2006-07-20公開
    QR CODE