| 研究生: |
吳白龍 Wu, Pai-Lung |
|---|---|
| 論文名稱: |
功能梯度壓電楔形結構之面外電彈場分析 Analysis of Antiplane Electro-elastic Field in a Functionally Graded Piezoelectric Material Wedge |
| 指導教授: |
褚晴暉
Chue, Ching-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 奇異性階數 、電彈場 、功能梯度壓電材料 、楔形結構 |
| 外文關鍵詞: | electro-elastic field, wedge structure, functionally graded piezoelectric material, singularity order |
| 相關次數: | 點閱:133 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的在於研究功能梯度壓電楔形結構受到面外剪力及面內電負載之電彈場問題。首先將材料性質假設為沿著半徑方向變化的連續函數,藉由梅林轉換及殘值定理的數學方法推導出在三種不同邊界條件A-A,B-B及A-B (flux-flux, potential-potential, flux-potential)下之奇異性階數及電彈場完整的形式及其物理意義。
研究結果發現奇異性階數與非均質材料參數、楔形角及邊界條件等因素有關。當楔形邊界受到均佈剪力及均佈電荷作用下,在滿足特定條件時,奇異性可能由r的指數型式轉變成log(r)之型式。而位移、電位、應力及電位移之解析解可退化成功能梯度楔形、壓電楔形及彈性楔形等問題。
The electro-elastic problems of a functionally graded piezoelectric material wedge under longitudinal shear load and inplane electrical load are studied in this paper. The material properties are assumed as a continuous function along radial direction. After applying Mellin transform and Residues theorem, the singularity orders, the physical quantities in the electro-elastic field are obtained in explicit forms for three different boundary conditions (flux-flux, potential-potential, flux-potential).
The results show that the singularity orders depend strongly on the nonhomogeneous material parameter, the wedge angle and the boundary conditions. When one of the boundary edges is subjected to uniformly distributed shear force and/or electrical displacement starting from the apex of the wedge, the r-type singularity will be shifted to log(r)-type singularity if the special condition is satisfied. The analytical expressions of the displacements, electrical potentials, stresses, and the electrical displacements can be simplified to the degenerated problems such as the functionally graded elastic material wedge problem, the piezoelectric wedge problem, and the elastic wedge problem.
[1] Tranter, C.J., 1948, The use of the Mellin transform in finding the stress
distribution in an infinite wedge. Quarter Journal of Mechanics and
Applied Mathematics, Vol. 1, pp. 125-130.
[2] Williams, M.L., 1952, Stress singularities resulting from various boundary
conditions in angular corners of plates in extension. Journal of Applied
Mechanics 19 , pp. 526-528.
[3] Bogy, D.B., 1971, Two edge-bonded elastic wedges of different materials
and wedge angles under surface tractions. Transactions of the ASME,
Journal of Applied Mechanics, Vol. 38, pp. 377-386.
[4] Ma, C.C. and Hour, B.L., 1989, Analysis of dissimilar anisotropic wedges
subjected to antiplane shear deformation. International Journal of Solids
and structures, Vol. 25, pp. 1295-1309.
[5] Xu, X.L. and Rajapakse, R.K.N.D., 2000, On singularities in composite
piezoelectric wedge and junctions. International Journal of Solids and
structures, Vol. 37, pp. 3253-3275.
[6] Chen, B.J., Xiao, Z.M. and Liew, K.M., 2002, Electro-elastic stress
analysis for a wedge-shaped crack interacting with a screw dislocation in
piezoelectric solid. International Journal of Engineering Science, Vol.
40, pp. 621-635.
[7] Chen, B.J., Xiao Z.M. and Liew, K.M., 2002, A screw dislocation in a
piezoelectric bi-material wedge. International Journal of Engineering
Science, Vol. 40, pp. 1665-1685.
[8] Chue, C.H. and Chen, C.D., 2003, Antiplane singularities of a bonded
piezoelectric wedge. Archive of Applied Mechanics, Vol. 72,673-685.
[9] Kassir, M.K., 1972, A note on the twisting deformation of a non-
homogeneous shaft containing a circular crack, International Journal of
Fracture Mechanics, Vol. 8, pp. 325-334.
[10]Delale, F. and Erdogan, F., 1983, The crack problem for a nonhomogeneous
plane, Transaction of the ASME, Journal of Applied Mechanics, Vol. 50,
pp. 609-614.
[11]Erdogan, F., 1985, The crack problem for bonded nonhomogeneous materials
under antiplane shear loading, Transaction of the ASME, Journal of
Applied Mechanics, Vol. 52, pp. 823-828.
[12]Erdogan, F., Kaya, A.C. and Joseph, P.F., 1991, The crack problem in
bonded nonhomogeneous materials, Transaction of the ASME, Journal of
Applied Mechanics, Vol. 58, pp. 410-418.
[13]Jin, Z. H. and Noda, N., 1994, Crack-tip singular fields in nonhomogeneous
materials. Transactions of the ASME, Journal of Applied Mechanics, Vol.61,
pp. 738~740.
[14]Erdogan, F., 1995, Fracture mechanic of functionally graded materials.
Composites Engineering , Vol. 5, pp. 753-770.
[15]Yang, Y. Y., 1998, Stress Analysis in a joint with a functionally graded
material under a thermal loading by using the Mellin transform method,
International Journal Solids and Structures, Vol. 35, pp. 1261-1287.
[16]Lawrence, S., 1989, An Antiplane Shear Crack in a Nonhomogeneous Elastic
Material, Engineering Fracture Mechanics, Vol. 32, pp. 21-28.
[17]Chue, C.H. and Ou, Y.L., 2006, Analysis of antiplane elastic field in
nonhomogeneous material wedge structure. Journal of the Chinese Institute
of Engineers, Vol. 29, pp. 125-133.
[18]Alberto, C. and Marco, P., 2005, On the asymptotic stress field in
angularly nonhomogeneous materials. International Journal of Fracture,
Vol. 135, pp. 267-283.
[19]Bever, M.B. and Duwez, P.E., 1972, Gradient in composite materials,
Materials Science and Engineering, Vol. 10, pp. 1-8.
[20]王保林, 韓傑纔, 張幸紅, 2003, 非均勻材料力學, 科學出版社, 北京.
[21]Sneddon, I.,N., 1972, The use of integral transforms. McGraw, New York.