| 研究生: |
陳振誠 Chen, Cheng-Chen |
|---|---|
| 論文名稱: |
台灣本土氣候下換氣率影響建材有機物質逸散特性之研究-以合板及清漆為例 A Study on VOCs Emitted Characteristics of Air Exchange Effect from Building Materials in Local Climate of Taiwan– Plywood and Varnish for Example |
| 指導教授: |
江哲銘
Chiang, Che-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 換氣率 、散經驗模式 、型環控箱試驗法 |
| 外文關鍵詞: | TVOC, Air Exchange Rate, VOCs, Small Scale C, Emission Model |
| 相關次數: | 點閱:115 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究根據逸散理論及實驗量測(小型環控箱測試法ASTM D5116-97)的方式比對分析,依據台灣本土氣候條件變因(30℃-80%RH)及不同換氣率(0.5、1.0、1.5 ACH),提出符合本土環境條件之建材有機物質「逸散經驗模式」,並藉由逸散經驗模式推估建材之逸散濃度及速率,透過健康風險評估方式(U.S.-EPA,1994),探討室內建材產生之空氣污染物(VOCs)危害度(HI)。主要是分析建材(合板及清漆)之逸散污染物種類(定性)及污染物濃度(定量),並以建材有機物質「逸散特性」及「化合物危害度」為評斷基準,對現實環境條件提出較佳之「通風換氣率」建議,作為未來設計者、施工者及使用者之應用參考依據。本研究主要可歸納以下結論:
一、本土環境氣候變因對建材揮發性有機物質之逸散變化影響
透過實驗模組變化探討本土溫度、相對濕度(夏季室內30℃、80 % RH)之室內氣候條件,建材揮發性有機物質之逸散變化,並與國際常用之ASTM D5116-97測試標準 (25℃、50 % RH) 作差異比對,結果發現,在本土氣候下,清漆測試之總逸散濃度較標準條件總逸散濃度增加123%,在合板測試上,本土氣候條件總逸散濃度較標準條件總逸散濃度增加152 %。
二、通風換氣變化對室內建材揮發性物質逸散濃度之影響
依具一般建築換氣效率(Air Exchange Rate)之設定,本研究以0.5、1.0、1.5ACH為變動因子,在本土氣候下對合板及清漆建材做TVOC測試,結果發現,清漆建材提高「換氣率」有顯著移除有機物質效果,提升至1.0ACH可增加43.6%移除效率、提升至1.5ACH可增加76%移除效率,在合板建材上,提升至1.0ACH可增加55.1%移除效率、提升至1.5ACH可增加60%移除效率,移除效果顯著。
三、建立本土環境清漆及合板VOCs濃度逸散經驗模式
藉由單片試體清漆及合板建材在環控箱內之歷時逸散濃度觀察結果,建立清漆及合板VOCs逸散經驗模式,未來建材可透過此「逸散經驗模式」由「標準條件」測試之數值轉換為「本土氣候條件」之數值,並可再依據不同「換氣率」轉換不同之逸散濃度,以提供未來健康建材管制及換氣效率推估之基礎模式。
四、建材揮發性有機物質之危害度評估
根據實驗結果發現,在本土氣候條件下清漆逸散之TVOC會有HI (TOTAL) =181.2~430.4之健康危害度,長期暴露於此污染狀態,危害居住人員健康,因此建議管制此類建材使用,降低室內空氣VOCs濃度,以維持健康環境。
The research proposes a Building Materials VOCs Emission that suits the local Climate conditions based on Emission Model and Experimental (ASTM D5116-97) comparison and analysis methods according to local climate conditions such as Relative Humidity (30℃-80%RH) and different Air Exchange Rate (0.5、1.0、1.5ACH). In addition, we approximate the concentration and rate of the volatility of constructional materials based on Emission Experience Model. With Health Risk Evaluation method(U.S.-EPA,1994), we are able to discuss the damage (Hazard Index) caused by the pollutants (VOCs) produced by constructional materials within indoor environment. The conclusions of this research can be categorized as follows:
1. Effects of local environmental changes on volatile organic compounds
In accordance to international standards such as ASTM D5116-97, we discuss and compare the differences, which would affect the emission rate of VOCs of materials, between local climate conditions including interior temperatures and relative humidity (30℃,80 % RH) and that of ASTM (25℃,50 % RH). As a result, we discover that under the local conditions, experiments on Varnish produce an increase of 123% in emission concentration as compared to the standard results, whereas the Plywood experiments produce an increase of 152% in emission concentration as compared to the standard results.
2. Effects of Air Exchange Rate on the concentration of volatile materials
According to the general setting for Air Exchange Rate, we decide to set ACH as variable and carry out TVOC tests on Plywood and Varnish constructional materials under local conditions with 0.5, 1.0, and 1.5 ACH respectively. As a result, we discover that the removal of harmful organic compounds is more effective by increasing air exchange rates. For example, the effective removal rate of Varnish materials increases 43.6% and 76% when ACH is increased to 1.0 and 1.5 respectively, whereas effective removal rate of Plywood materials increases 55.1% and 60% when ACH is increased to 1.0 and 1.5 respectively.
3. Constructions of Emission Model for local Climate Varnish and Varnish VOCs concentration emission
From the observations done on the samples within the chamber, we are able construct a Emission Model for the VOCs emitted from Varnish and Plywood. In the future, constructional materials are able to follow the Emission Experience Model and verify themselves against it to make sure they fits into the acceptable ranges under local weather conditions and different air exchange rates.
4. Health evaluations of VOCs within Building Materials
According to the experiment results, under the standard laboratory conditions, the continuous emission of TVOC will create a Hazard Index, HI (TOTAL) =181.2~430.4. Long-term exposure under this specific condition will endanger the health of the members living within it, and therefore we should strictly control the usage of such materials to ensure a healthy living environment.
一、 中文部分
1. 江哲銘,綠建材標章制度建立與推廣補助計畫,內政部建築研究所, 2003。
2. 蘇慧貞、江哲銘、李俊璋,室內空氣品質標準於不同建築物之試行評估及管制策略研定,行政院環境保護署專題委託研究計畫,2000。
3. 陳東榮、江哲銘,「住宅室內空氣品質(CO、CO2、PM10)現場測定與評估探討」,成大建研所碩士論文,1993。
4. 李芝珊,「居家環境和辦公大樓室內空氣品質調查評估」,環保署,1998。
5. 張志成、周淑梅,「建築室內逸散物質檢測分析研究(一)」,1999。
6. 江哲銘、李俊璋,「室內建材揮發性有機物質標準檢測方法及程序之研究」,內政部建研所,2001。
7. 江哲銘、李俊璋,「室內環境品質及性能研究計畫4.-塗料類建材有機逸散物資料庫之建立」,內政部建研所,2002。
8. 周伯丞、江哲銘,「建築軀殼開口部自然通風效果之研究」,成大建築博士論文,2000。
9. 邵文政、江哲銘、陳丁于,「台灣地區室內氣溫對建材中揮發性有機物質逸散行為影響之研究-以清漆為例」,第十四屆中華民國建築學會建築研究成果發表會論文集,2002。
10. 郭俊良,「塗料製造業揮發性有機物類(VOC)減量及逸散防制」,塗料與塗裝技術,1998。
11. 陳丁于、江哲銘,「台灣地區室內環境因子對建材揮發性有機物質逸散行為影響之研究-以清漆為例」,成大建研所碩士論文,2002。
12. 陳新智,「室內木質建材揮發性有機物逸散之研究」,台大環工所碩士論文,2000。
13. 陳劉旺、董欽文,「塗料製造化學」,高利圖書有限公司,1997。
14. 陳震宇,「室內木質建材甲醛逸散之研究」,台大環工所碩士論文,2001。
15. 彭定吉,「集合住宅室內空氣環境(CO2、CO、粉塵)現場量測方法之探討」,成大碩論,1992。
16. 黃冠仁,「室內建材逸散揮發性有機物之研究-黏著劑之揮發性有機物逸散因子」,台大環工所碩士論文,1999。
17. 楊廣苓、羅俊光,「環境中微量氣態有機污染物採樣方法之探討」,科儀新知第十七卷五期,1996。
18. 盧昆宗,「維護室內健康安全的塗裝設計與施工要點」,塗料與塗裝技術Vol.75,2002。
19. 鍾美華、黃思篿、張淑芬,「有機性有害空氣污染物列管名單篩選方法之探討」,第十屆空氣污染控制技術研討會論文集,p.193-200,1993。
20. 江哲銘、王文安,「建築室內環境保健控制綜合指標之研究」,內政部建築研究所,1999。
21. 江哲銘、蘇慧貞,「92年室內環境品質診斷及改善補助計畫」,內政部建築研究所,2003。
22. 江哲銘、李俊璋,建材有機逸散物資料庫之建立-地板類建材,內政部建築研究所,2003。
23. 蘇慧貞、江哲銘、李俊璋,高雄市辦公大樓之室內空氣品質調查與健康危害之評估,高雄市政府環境保護局,2001。
24. 蘇慧貞、江哲銘、李俊璋,空調系統之使用對商業區辦公大樓空氣品質之影響研究,國科會環保署科技合作計畫,2000。
25. 呂文弘,各國建築室內逸散物質檢証體系之現況分析與探討,內政部建築研究所,2000。
二、 英文部分
1. Nielsen,The importance of building materials and building construction to SBS,1998
2. Ole Raaschou-Nielsen ,Christian Lohse, Birthe L. Thomsen, Henrik Skov,Jorgen H. Olsen,Ambient Air Levels and Exposure of Children to Benzene,Toluene,and Xylenes in Denmark ,Environment Research Vol.75 , 1997.
3. U.S. EPA, Healthy Buildings, Healthy People: A Vision for the 21st Century, 2001.
4. P.-C. Wu ,Y.-Y. Li ,C.-C. Lee ,C.-M. Chiang ,H.-J.J. Su,Risk assessment of formaldehyde in typical office buildings in Taiwan ,Indoor Air 2003,Volume 13 No.4,2003.
5. Huey-Jen Su, Pei-Chih Wu, “Exposure Assessment of Indoor Allergens, Endotoxin, and Airborne Fungi for Homes in southern Taiwan”, Environment Research Section A85., 2001.
6. Ministry of Environment. The National Building Code of Finland. Indoor Climateand Ventilation in Buildings,1987.
7. Berkeley Solar Group."Occupancy Patterns and Energy Consumption in New California Houses (1984-1988)" California Energy Commission Sacramento,1990.
8. Blasnik, M., J. Proctor, T. Downey, J. Sundal and G. Peterson "Assessment of HVAC Installations in New Homes in Nevada Power Company's Service Territory". Nevada Power Company, Electric Power Research Institute and Nevada Department of Business and Industry, State Energy Office, Las Vegas, NV. EPRI TR-105311,. 1995.
9. T. Mitamuraa,*, H. Yoshinob, H. Osawac, Y. Kuwasawac,2003, Investigation of indoor air quality and ventilation rate for sick houses in Japan, Healthy Buildings 2003.
10. ASTM D5116-97, “Standard Guide for Small-Scale Environmental Chamber Determinations of Organic Emissions From Indoor Materials/Products”, 1997.
11. Brooks, B.O., G.M. Utter, J.A. Debory and R.D. Schimke, “Indoor Air Pollution: An Edifice Complex”, Clinical Toxicology, 1991.
12. Colombo, A., De Bortoli, M., Schauenburg, H., and Vissers, H., Chamber Testing of Organic Emission from Building and Furnishing Material, The Science of the Total Environment Vol.91., 1990.
13. Dr. Dagmar Schmidt Etkin, IEQ Strategies, 1996.
14. J.P. Zhu, R.J. Magee, J.S. Zhang and C.Y. Shaw, “A Small Scale Chamber Test Method for Measuring Volatile Organic Compound Emissions from Wet Building Materials”, CMEIAQ Final report 1.3, 1999.
15. Johnsson, I., “Determination of organic compound in indoor air with potential reference to air quality”, Atmospheric Environment, 12,
16. Jones A.P.,“Indoor Air Quality and Health,” Atmospheric Environment, 33, p.4535-4564,1999.
17. L. Molhave, “Organic compounds as indicators of air pollution”, Indoor Air, Vol. 13, Sup. 6,2003.
18. M. Maroni., “Indoor Air Quality”,1995.
19. Maroni, M., B. Seifert and T. Lindvall, “Indoor Air Quality - a Comprehensive Reference Book”, Elsevier, Amsetrdam, 1995.
20. Matthews, T.G., Wilson D.L., Thompson, A.J., Mason, M.A., Bailey, S.N., and Nelms, L.H., Inter-laboratory Comparison of Formaldehyde Emission from Particle Board Underlayment in Small Scale Environment Chambers, Journal of the Air Pollution Control Association, Vol. 37, 1987.
21. Molhave L, “Indoor Air Pollution Due To Organic Gases and Vapors of Solvents in Building Materials”, Environment International, Vol.8, 1982.
22. Molhave, L., Moller, J., “The atmospheric environment in modern Danish dwellings-measurement in 39 flats, indoor climate”, (eds.) P.O. Fanger, O. Valbjorn, Danish Building Research Institute, Horsholm, Denmark, p.171-186, 1978.
23. Nielsen, The importance of building materials and building construction to SBS, 1988.
24. Richard A. Wadden, Peter A. Scheff, “Indoor Air Pollution”, 1982.
25. Seifert, B. and Abraham, H.J., “Indoor air concentrations of benzene and some other aromatic hydrocarbons”, Ecotoxicology and Environmental safety 6, , 1982.
26. Seifert, B., “Organic Indoor Pollutant: Source, Species and Concentrations”, Chemical and Environment Science Volume 4: Chemical, Microbiological, Health and Comfort Aspects of Indoor Air Quality—State of the Art in SBS, Ed. Knoppel H. and Wolkoff, .
27. Spengler, J.D., and K.Sexton, Indoor Air Pollution: A public health perspective, Science Vol. 121,1983.
28. Tichenor, B. A. and Guo, Z., “The Effects of Ventilation on Emission Rate of Wood Finishing Materias”, Environment International, Vol.17, p.317-323, 1991.
29. Tichenor, B. A., Guo, Z., and Sparks, L. E., “Fundamental Mass Transfer Model for Indoor Air Emission from Surface Coating”, Indoor Air, Vol.3,1993.
30. Tichenor, B. A., “Measurement of Organic Compound Emissions Using Small Scale Chamber”, Environment International, Vol.15,1989.
31. Ven Der Wal and Hoogeveen and Wouda, “The Influence of Temperature on the Emission of Volatile Organic Compound”, Indoor Air, Vol7, 1997.
32. Wen Cheng Shao, Zhe Ming Chiang, Ting Yu Chen, and Ying Ching Chen, “Integrated Impacts of the Indoor Temperature on the Characteristics of VOC Emissions from Local Paints in TAIWAN – Solvent-based Paints for Example”, submitted paper of Health Building conference in Singapore, 2003.
33. Ying Zhang and Fariborz Haghighat, “The Impact of Surface Air Movement on Material Emission”, Build Environ., 32(6),1997.
三、 日文部分
1. 設備と管理編輯部編,ビル設備. 衛生管理チエツクリスト,オ一ム社,1992。
2. 社團法人,日本塗料工業會 室內環境對策研究會,塗裝と塗料,Vol.582,1998。
3. 橋本光正,塗裝技術,28(12),1989。