簡易檢索 / 詳目顯示

研究生: 陳輿嫻
Chen, Yu-Hsien
論文名稱: 以CO2雷射雕刻鈉鈣玻璃製成微流體晶片的研究
Microfluidic Chips Fabricated by CO2 Laser Ablation on Soda-lime Glasses
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 76
中文關鍵詞: 鈉鈣玻璃雷射加工微流體晶片
外文關鍵詞: Soda-lime glass, laser micromachining, microchannels
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討微流體晶片的微管道製程,採用CO2雷射雕刻鈉鈣玻璃(Soda-lime)基材的可行性。嘗試以不同的加工參數;包括:雷射功率、燒蝕速度、雕刻次數、加熱板溫度等;並針對製程所產生的缺陷,如:燒焦、裂痕、熱影響區、及碎屑堆積,進行一系列的試驗與探討,以期找出適合加工微管道的最佳化參數。並且為了減少這些缺陷,嘗試以加熱板來輔助加工,或是施行製後退火處理。再利用此製程製作之十字形狀微管道(電泳晶片典型樣式)成品,以電壓驅動的控制方式完成樣本注入(loading)及計量分配(dispensing)等階段,以測試連續注射模式的效果,並完成檢測分析。
    此外,本文也測試以不同的加工參數,針對長方形管道,以改變管道轉角曲率半徑(R=20、40、60 mm)的規格要求,比較管道成品的表面品質差異性,並以BOE蝕刻方式解決非直線形管道,易在加工邊緣處造成的碎屑堆積問題,成功證實了以CO2雷射加工鈉鈣玻璃基材的品質可靠性。

    This study investigates the control parameters for fabrication of the micro-channel on Soda-lime glasses using the CO2 laser scriber. It is well known that, when the micro-channel is carved directly by CO2 laser with air surrounded, the channel defects, including micro-cracks, scorches, and bulges, could be detected. Thus, a heating plate can be considered in order to overcome these defect problems caused by the laser fabrication. In this work, control parameters, including the laser power, scribing speed, scribing passes, and operating temperature of the heating plate are tested to optimize the fabricating quality for carving micro-channels on Soda-lime glasses by the CO2 laser scriber.
    Furthermore, micro-channels with different curvature for channel corners are fabricated by various control parameters, and the fabricating quality of the channel surfaces are discussed. According to the present results, the problems of non-linear forms for channel rims, caused by the laser beam, could be improved when proper control parameters are utilized.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 本文架構 4 第二章 文獻回顧 6 2-1 CO2雷射加工 6 2-2 傳統方式加工玻璃材料 8 2-3 CO2雷射加工玻璃材料 9 第三章 實驗方法與步驟 12 3-1 實驗儀器介紹 12 3-1-1 雷射加工系統 12 3-1-2 鍍金機 14 3-1-3 掃描式電子顯微鏡 15 3-1-4 表面輪廓量測儀 17 3-2 實驗流程介紹 18 3-2-1 玻璃退火 18 3-2-2 玻璃清洗 19 3-2-3 雷射加工玻璃 21 3-2-3-1 雷射在空氣中直接加工玻璃 21 3-2-3-2 加熱板上雷射加工玻璃 21 3-2-3-3 加熱板上雷射加工玻璃並做退火處理 22 3-2-4 鑽孔、清洗、對位、及高溫熔融接合 23 第四章 實驗結果與討論 25 4-1 CO2雷射在空氣中直接加工鈉鈣玻璃 25 4-2 CO2雷射在加熱板上加工鈉鈣玻璃 29 4-2-1 加熱板溫度350℃ 30 4-2-2 加熱板溫度400℃ 33 4-2-3 加熱板溫度450℃ 36 4-3 CO2雷射在加熱板上加工鈉鈣玻璃,並做退火處理 39 4-3-1 加熱板溫度350℃,退火溫度350℃ 40 4-3-2 加熱板溫度400℃,退火溫度400℃ 43 4-3-3 加熱板溫度450℃,退火溫度450℃ 46 4-4 以加熱板輔助加工後做退火處理的結果與討論 49 4-5 最佳化參數測試 52 4-5-1 微管道再現性 52 4-5-2 微管道深度與線能量密度之關係 54 4-6 不同微管道形狀設計 56 4-7 微管道表面修飾 58 4-8 十字型微管道 59 4-8-1 實驗設備 60 4-8-2 實驗流程 62 4-8-3 實驗分析 63 第五章 總結 65 5-1 本文貢獻 65 5-2 結論 65 5-3 心得 68 參考文獻 70 簡歷 76

    [1] J. B. Edel, R. Fortt, J. C. deMello and A. J. deMello, “Microfluidic routes to the controlled production of nanoparticles.” Chem. Commun. 10(2002), 1136-1137.
    [2] P. Wilding, M. A. Shoffner and L. J. Kricka, “PCR in a silicon microstructure.” Clin. Chem. 40(1994), 1815-1818.
    [3] P. He, S. J. Haswell and P. D. I. Fletcher, “Microwave heating of heterogeneously catalysed Suzuki reactions in a micro reactor.” Lab. Chip, 4(2004), 38-41.
    [4] J. Y. Cheng, C. W. Wei, K. H. Hsu, T. H. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development.” Sens. Actuator B-Chem. 99(2004), 186-196.
    [5] H. Klank, J. P. Kutter and O. Geschke, “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems.” Lab. Chip, 2(2002), 242-246.
    [6] Y. Liu, C. B. Rauch, R. L. Stevens, R. Lenigk, J. Yang, D. B. Rhine, and P. Grodzinski, “DNA Amplification and Hybridization Assays in Integrated Plastic Monolithic Devices.” Anal. Chem. 74(2002), 3063-3070.
    [7] 張國順, 鄭壽昌, “現代雷射製造技術。” 台北:新文京開發出版股份有限公司,2008
    [8] 劉海北, 莊世欽, “光電科技資料叢書之十二 雷射加工。” 行政院國科會光電小組,1987
    [9] 川澄博通, 蘇品書, “雷射加工技術。” 台南:復漢出版社,1985
    [10] 石井明, 八木重典, 蔡宗河, “CO2雷射加工。” 臺北:全華科技圖書有限公司,1995
    [11] A. Grosse, M. Grewe and H. Fouckhardt, “Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices.” J. Micromech. Microeng. 11(2001), 257-262.
    [12] 盧志昌, “硼矽酸鹽玻璃封焊材料之CO2雷射加工研究。” 碩士論文, 2004,國立台灣科技大學。
    [13] L. M. Fu, G. B. Lee, Y. H. Lin and R. J. Yang, “Manipulation of microparticles using new modes of traveling-wave-dielectrophoretic forces : numerical simulation and experiments.” IEEE-ASME Trans. Mechatron. 9(2004), 377-383.
    [14] 張凱鈞, “ CO2雷射加工硬脆材料與缺陷改善之研究。” 碩士論文, 2008,國立成功大學。
    [15] P. G. Berrie and F. N. Birkett, “The drilling and cutting of polymethyl methacrylate (Perspex) by CO2 laser.” Opt. Lasers Eng. 1(1980), 107-129.
    [16] A. Hartwig, J. Hunnekuhl, G. Vitr, S. Dieckhoff, F. Vohwinkel and O. D. Hennemann, “Influence of CO2 laser radiation on the surface properties of poly(ether ether ketone).” J. Appl. Polym. Sci. 64(1997), 1091-1096.
    [17] D. Snakenborg, H. Klank and J. P. Kutter, “Microstructure fabrication with a CO2 laser system.” J. Micromech. Microeng. 14(2004), 182-189.
    [18] B. H. Zhou and S. M. Mahdavian, “Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser.” J. Mater. Process. Technol. 146(2004), 188-192.
    [19] 黃冠仁, “ CO2雷射加工高分子及玻璃材料的缺陷改善探討。”碩士論文, 2006,國立成功大學。
    [20] D. J. Harrison, A. Manz, Z. H. Fan, H. Ludi and H. M. Widmer, “Capillary electrophoresis and sample injection systems integrated on a planar glass chip.” Anal. Chem. 64(1992), 1926-1932.
    [21] Z. H. Fan and D. J. Harrison, “Micromachining of capillary electrophoresis injectors and separators on glass chips and evaluation of flow at capillary intersections.” Anal. Chem. 66(1994), 177-184.
    [22] A. Jain, T. B. Tasciuc, A. P. Roday, M. K. Jensen and S. G. Kandlikar, “Development of an instrumented glass microchannel device for critical heat flux visualization and studies.” Proc. 21st IEEE SEMI-Therm Symposium, San Jose CA(2005), 26-30.
    [23] M. Stjernstrom and J. Roeraade, “Method for fabrication of microfluidic systems in glass.” J. Micromech. Microeng. 8(1998), 33-38.
    [24] C. H. Lin, G. B. Lee, Y. H. Lin and G. L. Chang, “A fast prototyping process for fabrication of microfluidic systems on soda-lime glass.” J. Micromech. Microeng. 11(2001), 726-732.
    [25] G. Allcock, P. E. Dyer, G. Elliner and H. V. Snelling, “Experimental observations and analysis of CO2 laser-induced microcracking of glass.” J. Appl. Phys. 78(1995), 7295-7303.
    [26] M. A. Finucane and I. Black, “CO2 laser cutting of stained glass.” Int. J. Adv. Manuf. Technol. 12(1996), 47-59.
    [27] J. Zhao, J. Sullivan and T. D. Bennett, “Wet etching study of silica glass after CW CO2 laser treatment.” Appl. Surf. Sci. 225(2004), 250-255.
    [28] B. L. Sowers, R. D. Birkhoff and E. T. Arakawa, “Optical absorption of liquid water in the vacuum ultraviolet.” J. Chem. Phys. 57(1972), 583-584.
    [29] G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region.” Appl. Optics, 12(1973), 555-563.
    [30] A. Kruusing, “Review Underwater and water-assisted laser processing : Part 1-general features, steam cleaning and shock processing.” Opt. Lasers Eng. 41(2004), 307-327.
    [31] J. Jiao and X. Wang, “A numerical simulation of machining glass by dual CO2 laser beam.” Opt. Laser Technol. 40(2008), 297-301.
    [32] K. Yamamoto, N. Hasaka, H. Morita and E. Ohmura, “Three dimensional thermal stress analysis on laser scribing of glass.” Precision Engineering, 32(2008), 301-308.
    [33] S. Nisar, M. A. Sheikh, L. Li and S. Safdar, “Effect of thermal stresses on chip-free diode laser cutting of glass.” Opt. Laser Technol. 41(2009), 318-327.
    [34] http://www.sign.com.tw/front/bin/home.phtml
    [35] http://www.ehong.com.tw/eh/001/index.php
    [36] 汪建民, “材料科學叢書二 材料分析。” 新竹:中國材料科學學會,1998。
    [37] http://www.ndl.narl.org.tw/web/index.html
    [38] http://www.dymek.com/CH/Dymek-products-5-005.aspx
    [39] 李泰龍, “應用AC電場之快速磁性流體微混合器。” 碩士論文, 2009,國立屏東科技大學。
    [40] Q. Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range.” J. Am. Ceram. Soc. 29(1946), 240-253.
    [41] M. H. Yen, J. Y. Cheng, C. W. Wei, Y. C. Chuang and T. H. Young, “Rapid cell-patterning and microfluidic chip fabrication by crack-free CO2 laser ablation on glass.” J. Micromech. Microeng. 16(2006), 1143-1153.
    [42] 潘致戎, “改善帶寬分佈之微流體注射晶片。” 碩士論文, 2007,國立屏東科技大學。
    [43] L. M. Fu, R. J. Yang, G. B. Lee and H. H. Liu, “Electrokinetic Injection Techniques in Microfluidic Chips.” Anal. Chem. 74(2002), 5084-5091.
    [44] L. M. Fu, R. J. Yang, G. B. Lee and H. H. Liu, “Electrokinetic Focusing Injection Methods on Microfluidic Devices.” Anal. Chem. 75(2003), 1905-1910.
    [45] L. M. Fu and C. H. Lin, “Numerical Analysis and Experimental Estimation of a Low Leakage Injection Technique for Capillary Electrophoresis.” Anal. Chem. 75(2003), 5790-5796.
    [46] J. W. Jorgenson and K. D. Lukacs, “High-resolution separations based on electrophoresis and electroosmosis.” J. Chromatogr. 218(1981), 209-216.
    [47] http://www.alibaba.com/countrysearch/TW/science-power-supply.html
    [48] S. C. Jacobson and R. Hergenroden, “Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices.” Anal. Chem. 66(1994), 1107-1113.
    [49] S. V. Ermakov, S. C. Jacobson and J. M. Ramsey, “Computer Simulations of Electrokinetic Injection Techniques in Microfluidic Devices.” Anal. Chem. 72(2000), 3512-3517.
    [50] E. S. Yeung, P. Wang, W. Li and R. W. Giese, “Laser fluorescence detector for capillary electrophoresis.” J. Chromatogr. 608(1992), 73-77.

    無法下載圖示 校內:2012-01-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE