| 研究生: |
黃奕齊 Huang, Yi-Chi |
|---|---|
| 論文名稱: |
利用碳熱還原法製備奈米氮化矽粉末及其火花電漿燒結體之微結構與機械性質分析 Microstructure and Mechanical Properties of SPS Sintered Nano-Si3N4 Ceramics via Carbothermal Reduction Method |
| 指導教授: |
黃肇瑞
Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 氮化矽 、奈米 、熱壓燒結 、火花電漿燒結 、碳熱還原法 、O’-sialon相 |
| 外文關鍵詞: | silicon nitride, nano, hot pressing, spark plasma sintering, carbothermal reduction and nitridation, O’-sialon |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米級氮化矽粉體有助於使燒結緻密的溫度降低,促使燒結體更容易達理論密度及奈米尺寸的微觀結構。其中奈米結構更可有效提升試片強度(Hall–Petch方程式)、耐磨耗性與超塑性。但也由於奈米粉體表面過多的氧殘留,而造成粉體在燒結過程中容易有第二相O’-sialon的出現,進而導致氮化矽機械性質降低。因此本研究以非晶質奈米氮化矽為起始粉末,分別利用HP和SPS兩種燒結方式,比較其燒結機制下對相組成、微觀結構與機械性質間的影響。接著利用碳熱還原反應除去奈米氮化矽表面過多的氧化物,以避免燒結體中O’-sialon相形成,並探討不同熱處理溫度下對粉體的反應機制及其燒結體的相組成、微結構、機械性質等影響。
研究結果顯示,以HP慢速升溫與SPS的快速升溫燒結製程中皆會有O’-sialon相出現,而在1800 oC的燒結溫度下,β相可佔試片最大量。微觀結構在SPS燒結中可促使試片不僅有長柱狀晶粒,基材上仍可維持次微米結構,並且有較大的視長寬軸比。因此在機械性質上可發現以SPS燒結法可有效促使氮化矽基材料提升韌性外,亦可藉由基材提供強硬度以維持良好的硬度性質。
當粉體添加5 wt%碳黑進行10小時的碳熱處理後發現,碳熱還原反應可在熱處理溫度1250 oC下有效進行,進而得到單一相氮化矽燒結體;但隨著熱處理溫度上升,氮化矽粉體中產生的液相開始阻礙碳熱還原反應。經分析發現在熱處理溫度1350 oC以上,粉體反應逐漸由碳熱還原轉變為氮化矽分解,造成在燒結體中發現大量的碳殘留與O’-sialon相。
比較碳熱還原反應機制與燒結體的機械性質發現,在熱處理溫度1250 oC下獲得單一相氮化矽,在強度上提升不大,主要是殘留碳的影響,但在韌性值方面,燒結溫度1800 oC韌性性質可提升32.3 %,而燒結溫度1600 oC韌性性質更可提升高達79.7 %,顯示獲得純β-Si3N4的優點。
Materials based on the nanocomposite concept described by Niihara, show excellent bending strength, which is accompanied by a modest increase of fracture toughness and improved creep behavior. However, fabrication of nanocomposite materials by a traditional processing route of mixing the submicrometre Si3N4 powders followed by hot pressing or pressureless sintering is sometimes problematic and often does not yield expected results. Therefore, we use amorphous and nano-Si3N4 as initial powders, and then perform carbothermal reduction and nitridation (CRN) to remove excess oxygen.
Experiment results indicate that the bulks of sintering powder by HP and SPS contain O’sialon phase before CRN and large amount of β phase, while sintered at 1800 oC. From microstructure observation, the higher aspect ratio and smaller matrix obtained by SPS synthesis not only enhance the fracture toughness but also the hardness.
According to the mechanism of CRN reaction, it avoids the O’sialon phase formation by removing the excess oxygen. We found that the carbon is effective to react with silica at 1250 oC, and consequently the pure β-Si3N4 is observed. But, when the calcination temperature increased to 1350 oC, the sintering additives (6Y8A) form liquid phase that lead to reaction of carbothermal reduction impeded. On the other hand, the liquid phase formation also promotes Si3N4 decomposed to Si2N2O. Therefore, there is residual carbon and O’sialon appears in the sintered bulk.
This residual carbon has influence on mechanical properties of the materials. The bending strength enhancement is not obvious even after getting pure β-Si3N4, because of the residual carbon affects the strength, but fracture toughness is found to increase clearly. The toughness of pure β-Si3N4 sample obtained under 1800 oC has been increased to 32.3% compared to without carbonthermal reduction, where as the powders fabricated by SPS at 1600 oC shows increase in toughness to 79.7%.
[1] J. J. Meléndez-Martínez, A. Domínhuez-Rodríguez, “Creep of Silicon Nitride,” Mat. Sci., 49, 19-107 (2004).
[2] Frank L. Riley, “Silicon Nitride and Related Materials,” J. Am. Ceram. Soc., 83 [2] ,245–65 (2000).
[3] M. J. Hoffmann and G. Petzow, "Microstructure Design of Si3N4-Based Ceramics, " in silicon nitride ceramics scientific andtechnological advances, proceeding of materials research societysymposium Vol.287(Boston, MA, Dec. 1992), Edited by I. W. Chen, P. F.Becher, M. Mitomo, G. Petzow, and T. S. Yen. Materials Research Society,Pittsburgh, PA, 3-15 (1993).
[4] M. Taguchi, “Application of High Technology Ceramics in JapaneseAutomobiles,” Adv. Ceram. Mat., 2[4], 752-762 (1987).
[5] R. Dillinger, J. Heinrich and J. Huber, “Slip-Cast Hot IsostaticallyPressed Silicon Nitride Gas Turbine,” Mat. Sci. Eng., A109: 373-78 (1988).
[6] A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, “On the Validity of the Hall-petch Relationship in Nanocrystalline Materials ”. Scripta Meta., 23 [10] , 1679-1683 (1989)
[7] Lutz Gürtler, Annelies Mühlbacher, Ulrike Michl, Hanns Hofmann, G Giancarlo Paggi, Vincenzo Bossi, Rigmor Thorstensson, Roberto G.-Villaescusa, Adolfo Eiras, JoseManuel Hernandez, Walter Melchior, Frédéric Donie, Bernard Weber, “Reduction of the diagnostic window with a new combined p24 antigen and human immunodeficiency virus antibody screening assay”, J. Vir. Methods, 75[1], 27-38 (1998)
[8] H. Gleiter, “Nanostructured Materials: Basic Concepts and Microstructure”, Acta Mat., 48[1], 1-29 (200)
[9] 高濂,李蔚,「奈米陶瓷」,五南圖書出版公司,2003,民92
[10] Mark I. Jones, Kiyoshi Hirao , Hideki Hyuga, Yukihiko Yamauchi ,Zhijian Shen , Mats Nygren, “Wear Properties of Self-reinforced -SiAlON Ceramics Produced by Spark Plasma Sintering”, Wear, 257, 292–296 (2004)
[11] Kenneth J.D. MacKenzie, Carolyn M. Sheppard, Glen C. Barris, Ann M. Mills, Shiro Shimada, Hajime Kiyono, “Kinetics and Mechanism of Thermal Oxidation of Sialon Ceramic Powders”, Therm. Acta, 318, 91-100 (1998)
[12] Anatoly Rosenanzy and I.-Wei Chen, “Kinetics of Phase Transformations in SiAlON Ceramics: II. Reaction Paths”, J. Eur. Ceram. Soc, 19, 2337-2348 (1999)
[13] K.H. JACK, “Review Sialons and related nitrogen ceramics”, J. Mat. Sci, 11 1135-1158 (1976)
[14] C. P. Dogan and J. A. Hawk, ‘‘Microstructure and Abrasive Wear in Silicon Nitride Ceramics,’’ Wear, 250, 256–63 (2001).
[15] Huahai Mao, Malin Selleby, “Thermodynamic Reassessment of the Si3N4–AlN–Al2O3–SiO2 System—Modeling of the SiAlON and liquid phases”, CALPHAD, 31, 269–280 (2007)
[16] YANG Jian, PAN Limei, XUE Xiangxin, WANG Mei, QIU Tai, “Effect of Tb2O3 Additive on Structure of Anatase and Photocatalytic Activity of TiO2/(O’+β’)-Sialon Multi-phase Ceramics”, J. Rare Earths, 27[2], 204 (2009)
[17] Hai-Doo Kim, “Fabrication of Silicon Nitride Nanoceramics and their Tribological Properties”, J. Am. Ceram. Soc., P1–6 (2010)
[18] M. Kitayamaa, K. Hiraob, M. Toriyamab, S. Kanzakib, “Modeling and Simulation of Grain Growth in Si3N4,” Acta mat. 46 [18], 6541-6557 (1998).
[19] Wolfgang Dressler, Hans-Joachim Kleebe, Michael J. Hoffmann, Manfred Rühle and Günter Petzow “Model Experiments Concerning Abnormal Grain Growth in Silicon Nitride”, J. Eur. Ceram. Soc., 16, 3-14 (1996).
[20] Miroslav Hnatko, Dusˇan Galusek, Pavol Sˇ ajgalı´k, “Low-cost Preparation of Si3N4–SiC Micro/nano Composites by in-situ Carbothermal Reduction of Silica in Silicon Nitride Matrix”, J. Eur. Ceram. Soc, 24, 189–195 (2004)
[21] Ortega, M.D. Alcala, C. Real,” Carbothermal Synthesis of Silicon Nitride (Si3N4): Kinetics and Diffusion Mechanism”, J. Mat. Pro. Tech., 19, 5224–231 (2008)
[22] Halil Arik, “Synthesis of Si3N4 by the Carbo-Thermal Reduction and Nitridation of Diatomite”, J. Eur. Ceram. Soc, 23, 2005–2014 (2003)
[23] E.T. Turkdogan, P.M.Bills and V.A.Tiooett, “Silicon Nitrides:Some Physico- Chemical Properties”, J. Appl. Chem.,8,296-302 (1958).
[24] K.Matsuhiro and T.Takajashi, “Physical Properties of SinteredSilicon Nitride Controlled by Grain Boundary Chemistry and Microstructure Morphology”, , in Proceeding of the MRSInternational Meeting on Advanced Materials, Edited by M.Doyamaetal., Material Research Society, Pittsburg, PA, 11-5 (1989).
[25] D.Hardie, and K.H.Jack, “Crystal Structures of Silicon Nitride”,Nature, 180, 332-33 (1957).
[26] F. Guju, M.J. Reece and D.A.J. Vaughan, “Cyclic Fatigue of Ceramics”, J. Mater. Sci., 26, 3275-86 (1991).
[27] S. Horibe and R. Hirahara, “Cyclic Fatigue of Ceramics Materials: Influence of Crack Path and Fatigue Mechanisms”, Acta Metall. Mat., 39[6], 1309-17 (1991).
[28] K.H.Jack, “The Role of Additive in the Densification of Nitrogen Ceramics”, in Final Technical Report, DAERO-78-G-012,European Research Office, U.S. Army, London, England, 3-14 (1978).
[29] G.R.Terwillinger, and F.F.Lange, “Pressureless Sintering of Si3N4 “,J. Mat. Sci., 10, 1169-73 (1995).
[30] R.Grun, “The Crystal Structure of β-Si3N4 ; Structural and Stability Considerations Between α- and β- Si3N4”, Acta Cryst., B35, 800-804 (1979).
[31] M.Peuckert, and P.Greil, “Oxygen Distribution in Silicon Nitride Powder”, J. Mat. Sci., 22, 3717-20 (1975).
[32] J.Weiss, ”Silicon Nitride : Composition, Fabrication Parameters, and Properties”, Ann. Rev. Mater. Sci., 11, 381-99 (1981).
[33] D.R.Messier, F.L.Riley, and R.J.Brook, “The α / β Phase Transformation”, J. Mat. Sci., 13, 1199-1205 (1978).
[34] V.K.Sarin, “On the α - to β - Phase Transformation in Silicon Nitride”, Mat. Sci. and Eng., A105/106, 151-158(1988).
[35] L.J.Bowen, R.J.Weston, T.G.Carthruthers, and R.J.Brook, “Hot-Pressing and the α-β Phase Transformation in Silicon Nitride”, J. Mat. Sci., 13, 341-350 (1978).
[36] Kenneth W. White, Feng Yu and Yi Fang, “In situ Reinforced Silicon Nitride – Barium Aluminosilicate Composite,”, in Handbook of Ceramic Composites, edited by Narottam P. Bansal, Kluwer Academic Publishers, 251-275 (2005).
[37] H.F.Priest, F.C.Burns, G.F.Priest, and E.C.Skaar, “Oxygen Content of Alpha Slicon Nitride”, J. Am. Ceram.Soc., 56[7], 395 (1973).
[38] L.J.Bowen, T.G.Carthruthers, and R.J.Brook, “Hot-Pressing of Si3N4 with Y2O3 and LiO2 as Additives”, J. Am. Ceram. Soc., 61[7-8], 335-339 (1978)
[39] 黃肇瑞,第二十三章 氮化物,陶瓷技術手冊 p777-804
[40] Kenneth W. White, Feng Yu and Yi Fang. “In situ Reinforced Silicon Nitride – Barium Aluminosilicate Composite”, Handbook of Ceramic Composites, Part III, 251-275 (2005)
[41] Yue Shao, Xiaolei Li, Huiming Ji, Xiaohong Sun, Pei Cao, “Effect of α-Al2O3 on in situ synthesis low density O’-sialon multiphase ceramics”, J. Alloy Comp. (2010)
[42] Ren-Guan Duan, Gert Roebben, Jozef Vleugels, Omer Van der Biest, “Optimization of microstructure and properties of in situ formed β-O-sialon–TiN composite”, Mat. Sci. Eng., A 427, 195–202 (2006)
[43] Sekercioglu and R.R. Wills, “ Effect of Silicon Nitride Powder Reactivity on the Preparation of the Si2N2O-Al2O3 Silicon Aluminum Oxynitride Solid Solution”, J. Am. Ceram. Soc., 62 [11-12], 590-593 (1979).
[44] Lindqvist and J. Sjoberg, “ Structural Changes in O’-SiAlONs, Si2-xAlxN2-xO1+x , x = 0.04 ~ 0.4”, Acta Cryst., B47, 672-678 (1991)
[45] K.Negita, “Effective Sintering Aids for Si3N4 Ceramics”, J. Mat. Sci. Letter, v4, 755-758 (1985).
[46] K.Negita, “Ionic Radii and Electronegative of Effective Sintering Aids for Si3N4 Ceramics”, J. Mat. Sci. Letter, v4, 417-418 (1985)
[47] W. D. Kingery, “Densification During Sintering in the Presence of a Liquid Phase: I,” J. Appl. Phys., 30 [3] 301-306. (1959)
[48] G.Woetting et al., MRS Symp. Proc., v287, Bosston ,MA,146,(1993)
[49] J.Weiss,Am. Rev. Mater. Sci.,11,381-399 (1981)
[50] Knoch, H, Schwetz, K A, Lipp, A, “Microstructure Development in Silicon Nitride”, in Progress in Nitrogen Ceramics Edited by F.L. Riley. Martinus Nijhoff, Boston, 381-92 (1983).
[51] G. Ziegler, J. Heinrich and G. Wötting, “ Review: Relationships between Processing, Microstructure and Properties of Dense and Reaction-bonded Silicon Nitride”, J. Mat. Sci, 22, 3041-3086 (1987).
[52] M.Tokita,"Mechanism of Spark Plusma Sintering", Sumltomo Coal Mlmng Company, Ltd. East Bldg. 108, Kanagawa Sc~enceP ark KSP
[53] M.Tokita,"Trends in Advanced SPS Sparek Plasma Sintering Systems and Technology", J. Soc. Pow. Tech. Jap., 30, 790 (1993)
[54] Tetsuro Nose, Toshimitsu Fuji, “Evaluation of Fracture Toughness for Ceramic Materials by a Single-Edge-Precracked-Beam Method”, J. Am. Ceram. Soc., 71 [ 5], 328–333 (1998).
[55] X. Wang, S.R. Casolco, G. Xu and J.E. Garay, "Finite element modeling of electric current-activated sintering: The effect of coupled electrical potential, temperature and stress ", Acta Mat., 55 [10], 3611-3622 (2007)
[56] G. Evans and E. A. Carles, “Fracture Toughness Determinations by Indentation,” J. Am. Ceram. Soc., 59 [7-8], 371-72 (1976).
[57] G.Wotting, B.Kanka, G.Ziegler, "Microstructural Development, Microstructural Characterization and Relation to Mechanical Properties of Dense Silicon Nitride", Non-Oxide Technical and Engineering Ceramics; Limerick; Ireland; 10-12 July 1985. 83-96 (1986).
[58] Wolfgang Dressler, Hans-Joachim Kleebe, Michael J. Hoffmann, Manfred Rühle and Günter Petzow “Model Experiments Concerning Abnormal Grain Growth in Silicon Nitride”, J. Eur. Ceram. Soc., 16, 3-14 (1996).
[59] U. Kolitsch, H. J. Seifert, T. Ludwig, and F. Aldinger, “Phase Equilibria and Crystal Chemistry in the Y2O3-Al2O3-SiO2 System,”J. Mater. Res., 14 [2], 447-55 (1998).
[60] David Salamon, Zhijian Shen, Pavol Šajgalík, “Rapid Formation of α-sialon During Spark Plasma Sintering: Its origin and implications,” J. Eur. Ceram. Soc, 27, 2541–2547 (2007).
[61] K.H. Jack “Review: Sialons and Related Nitrogen Ceramics” J. Mat. Sci, 11 , 1135-1158 (1976).
[62] C.P. Gazzara, D.R. Messier, “Determination of Phase Content of Si3N4 by X-ray Diffraction Analysis” Am. Ceram. Soc. Bull., 56, 777 (1977).
[63] Yue Shao, Xiaolei Li, Huiming Ji, Xiaohong Sun, Pei Cao, “Effect of α-Al2O3 on in Situ Synthesis Low Density O’-sialon Multiphase Ceramics”, J. Alloy. Comp. (2010)
[64] T. Nishimura, M. Mitomo, H. Hirotsuru, and M. Kawahara, “Fabrication of Silicon Nitride Nano-Ceramics by Spark Plasma Sintering” , J. Mater. Sci. Lett. 14, 1046 (1995).
[65] M. Nygren and Z. J. Shen, “On the Preparation of Bio-, Nano- and Structural. Ceramics and Composites by Spark Plasma Sintering,” Solid State Sci., 5 [1] 125–31 (2003)
[66] C. P. Dogan and J. A. Hawk, ‘‘Microstructure and Abrasive Wear in Silicon Nitride Ceramics,’’ Wear, 250, 256–63 (2001).
[67] Georges Chollon, “Oxidation Behaviour of Ceramic Fibres from The Si–C–N–O System and Related Sub-systems”, J. Eur. Ceram. Soc., 20 [12], 1959-1974 (2000)
[68] P.Becher, “Microstructural Design of Toughened Ceramics ”, J. Am. Ceram. Soc.,74 [2], 225-269 (1991).
[69] Md. Nizam Uddin, Osama A. Fouad, Masaaki Yamazato, Masamitsu Nagano, “Deposition and Characterization of Carbon Nitride Films from Hexamethylenetetramine/N2 by Microwave Plasma-enhanced Chemical Vapor Deposition”, App. Surf. Sci., 240, 120–130 (2005).
[70] M. Lattemann, E. Nold, S. Ulrich, H. Leiste, H. Holleck, “Investigation and Characterisation of Silicon Nitride and Silicon Carbide Thin Films”, Surf. Coat. Tech., 174 –175, 365–369 (2003).
[71] H. Hoche, D. Allebrandt, M. Bruns, Ralf Riedel, C. Fasel, “Relationship of Chemical and Structural Properties with The Tribological Behavior of Sputtered SiCN Films”, Surf. Coat. Tech., 202, 5567–5571 (2008).
[72] H. Bjbrklund, L. K. L. Falk, K. Rundgren and J. Wasen, “β-Si3N4, Grain Growth, Part I: Effect of Metal Oxide Sintering Additives”, J. Eur. Ceram. Soc, 17 1285- 1299 ( 1997).
[73] Emmanul, C. onyiyiuka, “Aluminium, Titanium Boride, and Nitride Films Sputter-deposited from Multicomponent Alloy Targets Studied by XPS.”, Applied Spectroscopy, 47, (1993).
[74] Alex D. Romaschin, Lan N. Bui, M. Thompson, Neil B. Mckeown, Peter G. Kalman, “Surface Modification of the Biomedical Polymer Poly(ethylene terephthalate)”, Analyst, 118, 463-474 (1993).
[75] D.S. Campbell, H.J. Leary, J.S. Slattery, JR., R.J. Sargent, “ESCA Surface Analysis of Plasma Exposed Silicon Nitride and Photorsist Polymer Films”, IBM General Technology Division, Essex Junction, 86, 328-329.
[76] M. Kitayamaa, K. Hiraob, M. Toriyamab, S. Kanzakib, “Modeling and Simulation of Grain Growth in Si3N4,” Acta Mat. 46 [18], 6541-6557 (1998).
[77] Shen Z, Nygren M. “Kinetic Aspects of Superfast Consolidation of Silicon Nitride Based Ceramics by Spark Plasma Sintering”, J. Mat. Chem., 11, 204–7 (2001).
[78] Olfgang Dressler, Hans-Joachim Kleebe, Michael J. Hoffmann, Manfred Rühle and Günter Petzow “Model Experiments Concerning Abnormal Grain Growth in Silicon Nitride”, J. Eur. Ceram. Soc., 16, 3-14 (1996).
[79] Horng-Hwa Lu and Jow-Lay Huang, “Microstructure in Silicon Nitride Containing β-phase Seeding: Part I”, J. Mat. Sci. Res., 14, 2966-2973 (1999)
[80] M. Krämer, M.J. Hoffmann and G. Petzow, “Grain growth kinetics of Si3N4 during α/ß-transformation”, Acta Meta. Mat., 41 [10], 2939-2947 (1993)
[81] M.J. Hohann, G. Petzow, “Tailored Microstructures of Silicon Nitride Ceramics”, Pure & Appl. Chem., 66 [9], 1807-1814 (1994).
[82] Kiyoshi Hirao, Takaaki Nagaok, Manuel E. Brito, Shuzo Kanzaki, “Microstructure Control of Silicon Nitride by Seeding with Rodlike β-Silicon Nitride Particles”, J. Am. Ceram. Soc., 77 [7], 1857–1862 (1994).
[83] Hirano T., Yang J., Niihara K., “Effect of Seed Crystal Properties on the Microstructure of Si3N4 Ceramics”, J. Ceram. Soc. of Japan, 104 [5], 462-465 (1996)
[84] Cs. Bala´ zsi, F.S. Cinar, O. Addemir, F. We´ber, P. Arato´, “Manufacture and Examination of C/Si3N4 Nanocomposites”, J. Eur. Ceram. Soc. 243, 287–3294 (2004).