簡易檢索 / 詳目顯示

研究生: 王耀德
Wang, Yao-Te
論文名稱: 針對可靠電源閘控設計之考慮偏壓不穩定效應的調整睡眠電晶體尺寸演算法
BTI-aware Sleep Transistor Sizing for Reliable Power Gating Designs
指導教授: 林英超
Lin, Ing-Chao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 48
中文關鍵詞: 電源閘控睡眠電晶體調整偏壓不穩定效應可靠度放電矩陣
外文關鍵詞: power gating, sleep transistor sizing, BTI effect, reliability, discharging matrix
相關次數: 點閱:144下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電源閘控(power gating)是一個有效能降低漏電流功耗的方法。此方法使用高臨界電壓(Vth)的電晶體來關掉電源,有效降低在待命的模式下的漏電流功耗,這種高臨界電壓的電晶體稱為睡眠電晶體。然而,這些睡眠電晶體受到偏壓不穩定效應(Bias Temperature Instability)的影響導致臨界電壓上升。較高的臨界電壓會減少電路的速度和可靠度。現今,許多睡眠電晶體的調整方法被提出,用來增加睡眠電晶體的寬度以維持電路的可靠度。然而,這些方法卻沒有考慮睡眠電晶體的偏壓不穩定效應,使得電路的可靠度出現問題。此外,電路本身也會受到偏壓不穩定效應的影響,因而降低電路的速度和產生可靠度的問題。在此篇研究中,我們提出兩種考慮偏壓不穩定效應的調整睡眠電晶體演算法來減少睡眠電晶體的總寬度。接著,我們也提出了放電矩陣(discharging matrix)的模型和相對應的演算法,用來計算流經睡眠電晶體的電流和降低計算放電矩陣的執行時間。實驗結果顯示,當只考慮睡眠電晶體的偏壓不穩定效應時,在90nm 製程下,提出的演算法可以減少25%~35%的睡眠電晶體面積。在32nm 製程下,提出的演算法可以減少13%~31%的睡眠電晶體面積。當同時考慮睡眠電晶體和電路的偏壓不穩定效應時,提出的演算法可以減少9%~31%的睡眠電晶體面積。此外,所提出的放電矩陣模型和演算法平均可以減少10%以上的執行時間。

    Power gating is an effective way to reduce leakage power. This technique uses high Vth transistors, called sleep transistors, to turn off the power supply and significantly reduce leakage power in standby mode. However, these sleep
    transistors suffer from the Bias Temperature Instability (BTI) effect, resulting in increased threshold voltage. The higher threshold voltage may decrease circuit speed and reliability. Currently, sleep transistor sizing techniques are proposed to increase sleep transistor sizes for circuit reliability. However, these techniques do not consider the BTI issue and may cause the circuit reliability issue to emerge. Furthermore, the circuit itself is also affected by the BTI effect, reducing the circuit speed and raising reliability issue. In this work, we propose two BTI-aware sleep transistor sizing algorithms to reduce the total width of sleep transistors. In addition, a discharging matrix model and its corresponding algorithm are also proposed to
    calculate the current flowing through the sleep transistor to further reduce the runtime for updating discharging matrices. When only the BTI effect on sleep transistors is considered, the proposed algorithms can reduce total sleep transistor width by 25%~35% in 90nm technology and 13%~31% in PTM 32nm technology on average. When the BTI effect on both sleep and cluster transistors are considered,the proposed algorithms can further reduce 9%~31% total sleep transistor width. In addition, the discharging matrix model and its corresponding algorithm can reduce runtime by more than 10% on average.

    中文摘要.................i Abstract ..................ii 誌謝.................... iii Contents ...............iv List of Tables .................vi List of Figures ..............viii Chapter 1 Introduction .................1 1.1 Background .....................1 1.2 Our Contributions ...........5 1.3 Paper Organization..........6 Chapter 2 Preliminaries................7 2.1 Bias Temperature Instability (BTI).........7 2.2 BTI Model.....8 2.3 Equations to Determine Sleep Transistor Width ......9 Chapter 3 Modifed Sleep Transistor Sizing Algorithm.......13 3.1 Problem Formulation of the Proposed Modified Algorithm ..........13 3.2 Modified BTI-aware Sleep Transistor Sizing Algorithm...............15 Chapter 4 Enhanced Sleep Transistor Sizing Algorithm.....19 4.1 Problem Formulation of the Enhanced Sizing Algorithm..............19 4.2 Enhanced BTI-aware Sleep Transistor Sizing Algorithm ..............20 Chapter 5 Diacharging Matrix Model................24 5.1 Mathematical Discharging Matrix Model...............24 5.2 Discharging Matrix Algorithm .............28 Chapter 6 Experimental Setup and Results........31 6. 1 Width and Runtime Comparisons when Considering the BTI Effect on Sleep Transistors .............33 6. 2 Width Comparisons when Considering the BTI Effect on Both Sleep Transistors and Cluster Transistors...............38 6. 3 Runtime Comparisons w/ and w/o the Proposed Discharging Matrix Model ................42 Chapter 7 Conclusions ...............44 References............45

    [1] M. Anis, S. Areibi, M. Mahmoud and M. Elmasry, “Dynamic and Leakage Power Reduction in MTCMOS Circuits Using an Automated Efficient Gate Clustering Technique,” in Proc. Design Automation Conference (DAC), June 2002, pp. 480-485.
    [2] M. Anis, S. Areibi and M. Elmasry, “Design and Optimization of Multithreshold CMOS (MTCMOS) Circuits,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 22, no. 10, pp. 1324-1342, Oct. 2003.
    [3] D. S. Chiou, D. C. Juan, Y. T. Chen and S. C. Chang, “Fine-Grained Sleep Transistor Sizing Algorithm for Leakage Power Minimization,” in Design Automation Conference (DAC), June 2007, pp. 81-86.
    [4] D. S. Chiou, S. H. Chen, S. C. Chang and C. Yeh, “Timing Driven Power Gating,” in Proc. Design Automation Conference (DAC), June 2006, pp. 121-124.
    [5] D. S. Chiou, Y. T. Chen, D. C. Juan and S. C. Chang, “Sleep Transistor Sizing for Leakage Power Minimization Considering Temporal Correlation,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 29, no. 8, pp. 1285-1289, Aug. 2010.
    [6] D. S. Chiou, S. H. Chen, and S. C. Chang, “Sleep Transistor Sizing for Leakage Power Minimization Considering Charge Balancing,” IEEE Trans. Very Large Scale Integration (TVLSI) Systems, vol. 17, no. 9, pp. 1330-1334,
    Sept. 2009.
    [7] J. Kao, S. Narendra, and A. Chandrakasan, “MTCMOS Hierarchical Sizing Based on Mutual Exclusive Discharge Patterns,” in Proc. Design Automation Conference (DAC), June 1988, pp. 495-500.
    [8] S. V. Kumar, C. H. Kim and S. S. Sapatnekar, “NBTI-Aware Synthesis of Digital Circuits,” in Proc. Design Automation Conference (DAC), June 2007,pp. 370–375.
    [9] C. Long and L. He, “Distributed Sleep Transistor Network for power Reduction,” IEEE Trans. Very Large Scale Integration (TVLSI) Systems, vol. 12, no. 9, pp. 937-946, Sept. 2004.
    [10] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, T. Kaneko, and J. Yamada, “A 1-V Multithreshold-Voltage CMOS Digital Signal processor for mobile Phone Application,” in J. Soild-State Circuits (JSSC), vol. 31, no. 11, pp. 1795-1802, Aug. 1996.
    [11] B.C. Paul, K. Kang, H. Kuflouglu, M. A. Alam and K. Roy, “Impact of NBTI on the Temporal Performance Degradation of Digital Circuits,” IEEE Electron Device Lett. (LED), Aug. 2005, pp. 560-562.
    [12] B. C. Paul, K. Kang, H. Kufluoglu, M. A. Alam, and K. Roy, “Negative Bias Temperature Instability: Estimation and Design for Improved Reliability of Nanoscale Circuits,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 26, no. 4, pp. 743–751, April 2007.
    [13] E. Pakbaznia and M. Pedram, “Coarse-Grain MTCMOS Sleep Transistor Sizing Using Delay Budgeting,” in Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), March 2008, pp. 385-390.
    [14] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and Minimization of PMOS NBTI Effect for Robust Nanometer Design,” in Proc. Design Automation Conference (DAC), June 2006, pp. 1047–1052.
    [15] W. Wang, M. Anis, and S. Areibi, “Fast Techniques for Standby Leakage Reduction in MTCMOS Circuits,” in Proc. System-on-Chip Conference (SOCC), Sept. 2004, pp. 21-24.
    [16] Y. Wang, X. Chen, W. Wang, C. Yu, Y. Xie, and H. Yang, "Gate replacement techniques for simultaneous leakage and aging optimization," in Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), April 2004, pp. 328-333.
    [17] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu and Y. Cao, “The Impact of NBTI Effect on Combinational Circuit: Modeling, Simulation and Analysis”, IEEE Trans. Very Large Scale Integration (TVLSI) Systems, vol. 18, no. 2, pp. 173-183, Feb. 2010.
    [18] H. I. Yang, S. C. Yang, W. Hwang, and C. T. Chuang, “Impacts of NBTI/PBTI on Timing Control Circuits and Degradation Tolerant Design in Nanoscale CMOS SRAM,” IEEE Trans. Circuits and Systems I (TCSI), vol. 58, no. 6, pp. 1239-1251, June 2011.
    [19] S. Zafar, Y. H. Kim, V. Narayanan, C. Cabral Jr., V. Paruchuri, B. Doris, J. Stathis, A. Callegari and M. Chudzik, “A Comparative Study of NBTI and PBTI (Charge Trapping) in SiO2/HfO2 Stacks with FUSI, TiN, Re Gates,” in
    Proc. VLSI Technology (VLSIT), Digest of Technical Paper, 2006, pp. 23–25.
    [20] S. Zafar, A. Kumar, E. Gusev, and E.Cartier, “Threshold Voltage Instabilities in High-k gate Dielectric Stacks,” IEEE Trans. Device and Materials Reliablity (TDMR), vol. 5, no. 1, pp. 45–64, March 2005.
    [21] Predictive Technology Model (PTM) and NBTI Model. Available:http://www.eas.asu.edu/~ptm
    [22] ISCAS Benchmarks, Available: http://www.pld.ttu.ee/~maksim/benchmarks

    下載圖示 校內:2016-09-02公開
    校外:2016-09-02公開
    QR CODE