簡易檢索 / 詳目顯示

研究生: 尤顥
You, Hao
論文名稱: 天然膠合材料於門板應用上的技術開發
Engineering Natural Adhesive Composites with Enhanced Performance for Door Panel Use
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 80
中文關鍵詞: 綠色能源吸音材料隔熱材料可生物降解
外文關鍵詞: Green energy, Sound absorbing material, Heat insulation material, biodegradable
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I 致謝 X 總目錄 XI 表目錄 XV 圖目錄 XVI 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 門板材料 3 1-2-1-1 膠合板 4 1-2-1-2 黏著劑 6 1-2-2 聲學特性 9 1-2-3 隔熱特性 11 1-2-4 生物降解作用 13 1-3 Hypothesis 15 1-3-1 減少殼聚醣自組裝行為 15 1-3-2 增加膠合板吸音性能 15 1-3-3 增加膠合板隔熱性能 15 1-3-4 玉米殼之光降解作用 15 1-4 研究歷程 16 第2章 應用理論 17 2-1 膠合板變形 17 2-2 膠合板吸音機制 18 2-2-1 厚度 18 2-2-2 密度 19 2-2-3 吸音原理 20 2-2-4 小型混響室法 20 2-3 膠合板隔熱機制 21 2-3-1 厚度 21 2-3-2 密度 21 2-3-3 熱傳導原理 22 2-4 玉米殼光降解 23 2-4-1 結晶度指數(Crystalline index) 24 第3章 實驗方法與設備 25 3-1 實驗材料及儀器 25 3-1-1 玉米殼基材實驗材料 25 3-1-2 膠合劑實驗材料 25 3-1-3 實驗儀器 26 3-2 實驗流程 27 3-2-1 材料製備 27 3-2-1-1 玉米殼基材 27 3-2-1-2 複合膠合劑 27 3-2-2 特徵峰量測 28 3-2-3 變形量量測 28 3-2-3-1 實驗材料 28 3-2-3-2 3D profile 28 3-2-4 機械性質測試 29 3-2-4-1 實驗材料 29 3-2-4-2 萬能試驗機 29 3-2-5 膠合板吸音測試 30 3-2-5-1 實驗材料 30 3-2-5-2 吸音測試 31 3-2-6 膠合板隔熱測試 32 3-2-6-1 實驗材料 32 3-2-6-2 熱傳性質量測 32 3-2-6-3 隔熱測試 33 3-2-7 光降解試驗 33 3-2-7-1 實驗材料 33 3-2-7-2 光照實驗 33 3-2-7-3 表面結構定量分析 34 3-2-7-4 XRD分析 34 3-2-7-5 拉伸試驗 34 第4章 結果與討論 35 4-1 膠合板變形 35 4-1-1 複合黏膠特徵峰 35 4-1-2 翹曲量 36 4-1-3 膠合板機械性質 38 4-2 膠合板吸音 39 4-2-1 混響時間 39 4-2-2 吸音係數 41 4-3 膠合板隔熱 44 4-3-1 膠合板熱傳性質 44 4-3-2 膠合板隔熱測試 46 4-4 膠合板生物降解 48 4-4-1 表面定量分析 48 4-4-2 X射線繞射儀 49 4-4-3 機械性質&失重比 51 第5章 總結 53 5-1 結論 53 5-2 未來展望 54 參考文獻 55 附錄 61

    1. Aranha, C.A.; Hudert, M.; Fink, G. Interlocking birch plywood structures. International Journal of Space Structures 2021, 36, 155-163.
    2. Wang, W.; Zammarano, M.; Shields, J.R.; Knowlton, E.D.; Kim, I.; Gales, J.A.; Hoehler, M.S.; Li, J. A novel application of silicone-based flame-retardant adhesive in plywood. Construction and Building Materials 2018, 189, 448-459.
    3. Yue, H.; Mai, L.; Xu, C.; Yang, C.; Shuttleworth, P.S.; Cui, Y. Recent advancement in bio-based adhesives derived from plant proteins for plywood application: A review. Sustainable Chemistry and Pharmacy 2023, 33, 101143.
    4. research, P. Plywood Market Size, Share and Trends 2024 to 2034. 2024.
    5. Park, S.; Lee, J.-I.; Na, C.-K.; Kim, D.; Kim, J.-J.; Kim, D.-Y. Evaluation of the adsorption performance and thermal treatment-associated regeneration of adsorbents for formaldehyde removal. Journal of the Air & Waste Management Association 2024, 74, 131-144.
    6. Hill, C.; Kymäläinen, M.; Rautkari, L. Review of the use of solid wood as an external cladding material in the built environment. Journal of Materials Science 2022, 57, 9031-9076.
    7. Liew, K.; Tan, Y.; Albert, C.M.; Raman, V.; Boyou, M. Potential of using natural and synthetic binder in wood composites. Forests 2022, 13, 844.
    8. Saal, K.; Kallakas, H.; Tuhkanen, E.; Just, A.; Rohumaa, A.; Kers, J.; Kalamees, T.; Lohmus, R. Fiber-Reinforced Plywood: Increased Performance with Less Raw Material. Materials 2024, 17, 3218.
    9. Oliver-Ortega, H.; Julian, F.; Espinach, F.X.; Tarrés, Q.; Ardanuy, M.; Mutjé, P. Research on the use of lignocellulosic fibers reinforced bio-polyamide 11 with composites for automotive parts: Car door handle case study. Journal of cleaner production 2019, 226, 64-73.
    10. Paul, S.; Radavelli, G.F.; da Silva, A.R. Experimental evaluation of sound insulation of light steel frame façades that use horizontal inter-stud stiffeners and different lining materials. Building and Environment 2015, 94, 829-839.
    11. Cao, X.; Liu, J.; Cao, X.; Li, Q.; Hu, E.; Fan, F. Study of the thermal insulation properties of the glass fiber board used for interior building envelope. Energy and Buildings 2015, 107, 49-58.
    12. Khalil, H.A.; Fazita, M.N.; Bhat, A.; Jawaid, M.; Fuad, N.N. Development and material properties of new hybrid plywood from oil palm biomass. Materials & Design 2010, 31, 417-424.
    13. Mati-Baouche, N.; Elchinger, P.-H.; de Baynast, H.; Pierre, G.; Delattre, C.; Michaud, P. Chitosan as an adhesive. European Polymer Journal 2014, 60, 198-212.
    14. Ang, A.F.; Ashaari, Z.; Lee, S.H.; Tahir, P.M.; Halis, R. Lignin-based copolymer adhesives for composite wood panels–A review. International Journal of Adhesion and Adhesives 2019, 95, 102408.
    15. Li, X.; Li, Y.; Zhong, Z.; Wang, D.; Ratto, J.A.; Sheng, K.; Sun, X.S. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive. Bioresource technology 2009, 100, 3556-3562.
    16. Wang, Z.; Li, Z.; Gu, Z.; Hong, Y.; Cheng, L. Preparation, characterization and properties of starch-based wood adhesive. Carbohydrate Polymers 2012, 88, 699-706.
    17. Zhang, Y.; Liu, B.-L.; Wang, L.-J.; Deng, Y.-H.; Zhou, S.-Y.; Feng, J.-W. Preparation, structure and properties of acid aqueous solution plasticized thermoplastic chitosan. Polymers 2019, 11, 818.
    18. Ma, X.; Qiao, C.; Wang, X.; Yao, J.; Xu, J. Structural characterization and properties of polyols plasticized chitosan films. International journal of biological macromolecules 2019, 135, 240-245.
    19. Seidi, F.; Yazdi, M.K.; Jouyandeh, M.; Dominic, M.; Naeim, H.; Nezhad, M.N.; Bagheri, B.; Habibzadeh, S.; Zarrintaj, P.; Saeb, M.R. Chitosan-based blends for biomedical applications. International Journal of Biological Macromolecules 2021, 183, 1818-1850.
    20. Sablani, S.S.; Dasse, F.; Bastarrachea, L.; Dhawan, S.; Hendrix, K.M.; Min, S.C. Apple peel‐based edible film development using a high‐pressure homogenization. Journal of food science 2009, 74, E372-E381.
    21. Sears, J.K.; Darby, J.R. The technology of plasticizers. (No Title) 1982.
    22. Bocqué, M.; Voirin, C.; Lapinte, V.; Caillol, S.; Robin, J.J. Petro‐based and bio‐based plasticizers: chemical structures to plasticizing properties. Journal of Polymer Science Part A: Polymer Chemistry 2016, 54, 11-33.
    23. Vieira, M.G.A.; Da Silva, M.A.; Dos Santos, L.O.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. European polymer journal 2011, 47, 254-263.
    24. Tang, X.; Zhang, X.; Zhang, H.; Zhuang, X.; Yan, X. Corn husk for noise reduction: robust acoustic absorption and reduced thickness. Applied Acoustics 2018, 134, 60-68.
    25. Lin, F.-M.; Hong, P.-Y.; Lee, C.-Y. An experimental investigation into the sound-scattering performance of wooden diffusers with different structures. Applied Acoustics 2010, 71, 68-78.
    26. Fouladi, M.H.; Ayub, M.; Nor, M.J.M. Analysis of coir fiber acoustical characteristics. Applied Acoustics 2011, 72, 35-42.
    27. Hai-fan, X.; Wang, D.; Hui-chao, L.; Zhao, N.; Xu, J. Investigation on sound absorption properties of kapok fibres. Chinese Journal of Polymer Science 2013, 31, 521-529.
    28. Berardi, U.; Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 2015, 94, 840-852.
    29. Huda, S.; Yang, Y. A novel approach of manufacturing light-weight composites with polypropylene web and mechanically split cornhusk. Industrial Crops and Products 2009, 30, 17-23.
    30. Chen, S.; Jiang, Y.; Chen, J.; Wang, D. The effects of various additive components on the sound absorption performances of polyurethane foams. Advances in Materials Science and Engineering 2015, 2015, 317561.
    31. Yang, T.; Hu, L.; Xiong, X.; Petrů, M.; Noman, M.T.; Mishra, R.; Militký, J. Sound absorption properties of natural fibers: A review. Sustainability 2020, 12, 8477.
    32. Koizumi, T.; Tsujiuchi, N.; Adachi, A. The development of sound absorbing. materials using natural bamboo fibers (jurnal universitas Doshisha). Jepang. Press: 2002.
    33. Nandanwar, A.; Kiran, M.; Varadarajulu, K.C. Influence of density on sound absorption coefficient of fibre board. Open Journal of Acoustics 2017, 7, 1.
    34. Qui, H.; Enhui, Y. Effect of thickness, density and cavity depth on the sound absorption properties of wool boards. Autex Research Journal 2018, 18, 203-208.
    35. Rojas, C.; Cea, M.; Iriarte, A.; Valdés, G.; Navia, R.; Cárdenas-R, J.P. Thermal insulation materials based on agricultural residual wheat straw and corn husk biomass, for application in sustainable buildings. Sustainable Materials and Technologies 2019, 20, e00102.
    36. Lagüela, S.; Bison, P.; Peron, F.; Romagnoni, P. Thermal conductivity measurements on wood materials with transient plane source technique. Thermochimica Acta 2015, 600, 45-51.
    37. Cetiner, I.; Shea, A.D. Wood waste as an alternative thermal insulation for buildings. Energy and Buildings 2018, 168, 374-384.
    38. Gnip, I.; Vėjelis, S.; Vaitkus, S. Thermal conductivity of expanded polystyrene (EPS) at 10 C and its conversion to temperatures within interval from 0 to 50 C. Energy and Buildings 2012, 52, 107-111.
    39. Pásztory, Z. An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering 2021, 44, 102604.
    40. Troppová, E.; Švehlík, M.; Tippner, J.; Wimmer, R. Influence of temperature and moisture content on the thermal conductivity of wood-based fibreboards. Materials and Structures 2015, 48, 4077-4083.
    41. Tang, G.; Bi, C.; Zhao, Y.; Tao, W. Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook. Energy 2015, 90, 701-721.
    42. Lakatos, Á.; Kalmár, F. Investigation of thickness and density dependence of thermal conductivity of expanded polystyrene insulation materials. Materials and structures 2013, 46, 1101-1105.
    43. Açıkalın, K. Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass. Bioresource Technology 2021, 337, 125438.
    44. Austin, A.T.; Ballaré, C.L. Photodegradation in terrestrial ecosystems. New Phytologist 2024, 244, 769-785.
    45. Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Wang, J.; Deng, Y.; Liu, Y.; Peng, B. The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation. Waste management 2018, 72, 138-149.
    46. Rashid, B.; Leman, Z.; Jawaid, M.; Ghazali, M.; Ishak, M. Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: Effect of treatment. Cellulose 2016, 23, 2905-2916.
    47. Akyol, Ç.; Ince, O.; Ince, B. Crop-based composting of lignocellulosic digestates: Focus on bacterial and fungal diversity. Bioresource technology 2019, 288, 121549.
    48. Marinho, O.A.; Martinelli, L.A.; Duarte-Neto, P.J.; Mazzi, E.A.; King, J.Y. Photodegradation influences litter decomposition rate in a humid tropical ecosystem, Brazil. Science of the Total Environment 2020, 715, 136601.
    49. Leceta, I.; Peñalba, M.; Arana, P.; Guerrero, P.; De La Caba, K. Ageing of chitosan films: Effect of storage time on structure and optical, barrier and mechanical properties. European Polymer Journal 2015, 66, 170-179.
    50. Domjan, A.; Bajdik, J.; Pintye-Hodi, K. Understanding of the plasticizing effects of glycerol and PEG 400 on chitosan films using solid-state NMR spectroscopy. Macromolecules 2009, 42, 4667-4673.
    51. Hervin, F.; Fromme, P. Guided wave propagation and skew effects in anisotropic carbon fiber reinforced laminates. The Journal of the Acoustical Society of America 2023, 153, 2049-2060.
    52. Laugier, P.; Haïat, G. Introduction to the physics of ultrasound. Bone quantitative ultrasound 2010, 29-45.
    53. Hernández, D.; Liu, E.; Huang, J.; Liu, Y. Design and construction of a small reverberation chamber applied to absorption and scattering acoustic measurements. Advanced Materials Research 2015, 1077, 197-202.
    54. Shtrepi, L.; Prato, A. Towards a sustainable approach for sound absorption assessment of building materials: Validation of small-scale reverberation room measurements. Applied Acoustics 2020, 165, 107304.
    55. Zhang, S.; Lee, J. Diffuseness quantification in a reverberation chamber and its variation with fine-resolution measurements. Buildings 2021, 11, 519.
    56. Yang, Y.; Fathidoost, M.; Oyedeji, T.D.; Bondi, P.; Zhou, X.; Egger, H.; Xu, B.-X. A diffuse-interface model of anisotropic interface thermal conductivity and its application in thermal homogenization of composites. Scripta Materialia 2022, 212, 114537.
    57. Lu, C.; Xu, X.; Cheng, Y.; Fan, Z.; Li, Z.; Zhao, J.; Wei, N. Interfacial thermal conductance at the gas-solid interface: microscopic energy transport mechanisms and the thermal rectification phenomenon. International Communications in Heat and Mass Transfer 2025, 166, 109153.
    58. Ali, A.; Issa, A.; Elshaer, A. A Comprehensive Review and Recent Trends in Thermal Insulation Materials for Energy Conservation in Buildings. Sustainability 2024, 16, 8782.
    59. Saha, P.; Manna, S.; Roy, D.; Kim, M.C.; Chowdhury, S.; De, S.; Sen, R.; Adhikari, B.; Kim, J.K. Effect of photodegradation of lignocellulosic fibers transesterified with vegetable oil. Fibers and Polymers 2014, 15, 2345-2354.
    60. Segal, L.; Creely, J.J.; Martin Jr, A.; Conrad, C. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile research journal 1959, 29, 786-794.
    61. Gómez-Siurana, A.; Marcilla, A.; Beltrán, M.; Berenguer, D.; Martínez-Castellanos, I.; Menargues, S. TGA/FTIR study of tobacco and glycerol–tobacco mixtures. Thermochimica Acta 2013, 573, 146-157.
    62. Sothornvit, R.; Krochta, J.M. Plasticizers in edible films and coatings. In Innovations in food packaging, Elsevier: 2005; pp. 403-433.
    63. Kuznetsova, S.; Deleplanque, S.; Allein, F.; Dubus, B.; Miniaci, M. Hierarchical meta-porous materials as sound absorbers. In Proceedings of Proceedings A; p. 20230831.
    64. Sahu, D.K.; Sen, P.K.; Sahu, G.; Sharma, R.; Bohidar, S. A review on thermal insulation and its optimum thickness to reduce heat loss. Int. J. Innov. Res. Sci. Technol 2015, 2, 2349-6010.
    65. Rodriguez, A.; Fuertes, J.P.; Oval, A.; Perez-Artieda, G. Experimental measurement of the thermal conductivity of fused deposition modeling materials with a DTC-25 conductivity meter. Materials 2023, 16, 7384.
    66. Wang, X.-Q.; Ren, H.-Q.; Zhao, R.-J.; Cheng, Q.; Chen, Y.-P. FTIR and XPS spectroscopic studies of photodegradation of moso bamboo (Phyllostachys pubescens Mazel). Spectroscopy and Spectral Analysis 2009, 29, 1864-1867.
    67. Brandt, L.; Bohnet, C.; King, J. Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. Journal of Geophysical Research: Biogeosciences 2009, 114.

    無法下載圖示 校內:2030-08-22公開
    校外:2030-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE