簡易檢索 / 詳目顯示

研究生: 林翊芳
Lin, Yi-Fang
論文名稱: 鋼筋混凝土柱火害修復後之耐震性能研究
Study on the Seismic Performance of Fire-Damaged Reinforced Concrete Columns after Repair
指導教授: 劉光晏
Liu, Kuang-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 147
中文關鍵詞: 修復火害鋼筋混凝土柱耐震性能遲滯迴圈慣性矩修正
外文關鍵詞: Repair of fire-damaged reinforced concrete columns, seismic performance, hysteresis loops, inertia moment correction
相關次數: 點閱:86下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 連續發生火災和地震對於建築物之結構性能會受到顯著影響,不僅威脅生命安全,還可能導致建築物和財產的嚴重損害,因此,為了保證後續使用,需要確保結構之安全性和穩定性,對於受火害影響之結構進行性能評估並採取適當的修復措施的需求日益增加。本研究之目的在於探討受火災影響之RC柱透過無收縮水泥砂漿和點焊鋼絲網進行修復,以評估其耐震性能。
    本研究製作2座鋼筋混凝土單柱試體,並根據CNS 12514-1之標準升溫曲線於火爐中進行加熱2小時,以模擬受火災之RC柱;接著,將試體之保護層鑿除,並以使用無收縮水泥砂漿進行填補,其中一座試體額外增加點焊鋼絲網。修復完成後,進行反覆載重實驗,於實驗過程中施加0.1軸壓比於柱頂,透過遲滯迴圈和包絡線討論構件之結構行為,並與未火害之CNF及火害未修復之CF1進行比對。實驗結果顯示,利用無收縮水泥砂漿修復可以良好的恢復側向強度,而點焊鋼絲網可以提供些許圍束效果,兩者皆為有效之修復工法。
    於實驗結束後,使用ETABS並搭配TEASPA進行分析,於分析過程中需要調整2個參數。第一為TEASPA中調整試體之強度,分別要考慮到火害後混凝土強度之影響、無收縮水泥砂漿強度以及點焊鋼絲網之圍束效果;第二為試體經過火害後修復及震害之影響,因此於ETABS中初步提出有效慣性矩需進行折減0.2倍,使分析更加擬合實驗結果。

    Continuous occurrences of fires and earthquakes significantly affect the structural performance of buildings, not only posing threats to life safety but also potentially causing severe damage to buildings and property. Therefore, to ensure the continued use of buildings, it is necessary to guarantee the safety and stability of the structure. There is an increasing need for performance evaluation and the implementation of appropriate repair and reinforcement measures for structures affected by fire damage. The purpose of this study is to investigate the seismic performance of fire-damaged RC columns repaired using non-shrink cement mortar and welded wire mesh.
    In this study, two reinforced concrete (RC) column specimens were fabricated. These specimens were subjected to a heating process in a furnace for two hours according to the CNS 12514-1 standard to simulate fire-damaged RC columns. After heating, the concrete cover of the specimens was removed and filled with non-shrink cement mortar. One of the specimens was additionally reinforced with welded wire mesh. After completing the repairs, cyclic loading tests were conducted, applying an axial load ratio of 0.1 to the top of the columns. The structural behavior of the specimens was analyzed through hysteresis loops and envelope curves. The results were compared with the non-fire-damaged column (CNF) and the fire-damaged but unrepaired column (CF1).The experimental results indicated that repairs using non-shrink cement mortar effectively restored lateral strength, and the spot-welded wire mesh provided some confining effects, making both methods effective for repairing fire-damaged columns.
    After completing the experiments, the next analysis was conducted using ETABS with TEASPA, with adjustment made to two parameters during the process. First, in TEASPA, adjustments were made for the specimen's strength considering the effects of post-fire concrete strength degradation, non-shrink cement mortar strength, and the confinement effect of spot-welded steel mesh. Second, due to the combined effects of fire damage and seismic loading on the specimens, an initial proposal was made to reduce the effective moment of inertia by 0.2 in ETABS to better fit the experimental results.

    摘要 I 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XV 符號表 XXI 第1章 緒論 1 1.1 研究動機與研究目的 1 1.2 研究方法 2 1.3 研究內容 3 第2章 文獻回顧 4 2.1 混凝土之力學特性 4 2.1.1 抗壓強度 4 2.1.2 抗拉強度 6 2.1.3 應力應變曲線 7 2.1.4 圍束混凝土之強度修正 11 2.2 鋼筋之力學特性 13 2.3 火害後鋼筋混凝土柱之耐震性能 15 2.4 鋼筋混凝土火害後修復相關研究 17 2.4.1 軸向承載力 18 2.4.2 耐震性能 19 2.5 鋼筋混凝土柱非線性行為 23 2.5.1 ETABS 23 2.5.2 TEASPA 23 第3章 實驗規劃 30 3.1 前言 30 3.2 試體設計 30 3.2.1 試體材料配置 31 3.2.2 熱電偶配置 31 3.2.3 試體修復設計 32 3.3 試體製作 36 3.3.1 基礎施作 37 3.3.2 柱身及柱頭 39 3.3.3 試體敲除及斷面修復作業 40 3.4 火害實驗 52 3.5 反覆載重 54 第4章 實驗結果與討論 57 4.1 前言 57 4.2 材料試驗 58 4.2.1 混凝土之材料試驗 58 4.2.2 鋼筋拉伸試驗 62 4.2.3 無收縮水泥砂漿抗壓試驗 63 4.3 火害實驗 64 4.3.1 耐火爐溫度與試體內部溫度 64 4.3.2 試體火害後之變化 67 4.4 反覆載重實驗 71 4.4.1 試體裂縫發展 71 4.4.2 試體力與位移關係行為 79 4.4.3 ACI 374.1耐震性能評估 97 第5章 分析與模擬 102 5.1 前言 102 5.2 參數修正 102 5.2.1 混凝土強度與無收縮水泥砂漿強度修正 102 5.2.2 點焊鋼絲網 105 5.2.3 慣性矩修正 106 5.3 軟體分析過程 107 5.4 分析結果比較 114 第6章 結論與建議 117 6.1 結論 117 6.2 建議 119 參考文獻 120

    [1] 內政部消防署,「111年全國火災統計分析」,2023。
    [2] 經濟部標準檢驗局,「中華民國國家標準 CNS 12514-1 建築物構造構件耐火試驗法-第1 部:一般要求事項」,2014。
    [3] Abrams, M. S., “Compressive strength of concrete at temperatures to 1600F”, Temperature and Concrete, SP-25, American Concrete Institute, Detroit, 1971, pp. 33-58.
    [4] European Committee for Standardization, “Eurocode 2: Design of concrete structures – Part 1 – 2: General rules – Structural fire design”, 2004.
    [5] 張雲妃,「火害後雙軸彎曲鋼筋混凝土柱之試驗與分析」,國立成功大學建築系所,博士論文,2006。
    [6] W. T. Tsai, “Uniaxial compressional stress-strain relation of concrete,” Journal of Structural Engineering, vol. 114, no. 9, pp. 2133-2136, 1988.
    [7] J. B. Mander, M. J. Priestley, and R. Park, “Theoretical stress-strain model for confined concrete,” Journal of structural engineering, vol. 114, no. 8, pp. 1804-1826, 1988.
    [8] 陳舜田、謝滄海,「有限元素法分析鋼筋混凝土構件受火害後之力學行為」,行政院國科會專題研究報告,1989。
    [9] Schneider U. and A. Haksever, “Bestimmung der Aguivalenten Brandauer von Statisch bestimmt Gelagerten Stahlbetonbalken bei Naturlichen Branden”, Bericht des Instituts fur Baustoffkunde und Stahlbeton bau der Technischen Iniversit at Braunschweig, 1976.
    [10] T. T. Lie, T. Rowe, and T. Lin, “Residual strength of fire-exposed reinforced concrete columns,” Special Publication, vol. 92, pp. 153-174, 1986.
    [11] 楊旻森、陳舜田,「火害後混凝土之殘留應變」,中國土木工程水利期刊,1997。
    [12] Hoshikuma, J., Kawashima, K., Nagaya, K., and Taylor, A. W.,“Stress-Strain Model for Confined Concrete in Bridge Piers,” Journal of Structural Engineering, ASCE, Vol. 123, No.5, 1997, pp.624-633.
    [13] ACI Committee 216, “Guide for determining the fire endurance of concrete elements”, American Concrete Institute, 1994.
    [14] 劉靖國,「高強度鋼筋混凝土梁火害後撓曲行為之研究」,國立臺灣科技大學工程技術研究所,臺北,1992。
    [15] 陳舜田、沈進發、沈得縣,「鋼筋混凝土結構物火害後之安全評估程序」,內政部建築研究所專題研究計畫成果報告,國立臺灣科技大學營建系,臺北,1997。
    [16] 吳波、馬忠誠、歐進萍,「高溫後鋼筋混凝土柱抗震性能的試驗研究」,土木工程學報,32(2),53-58,1999。
    [17] 王武元,「不同受火方式後鋼筋混凝土柱抗震性能的試驗研究」,華僑大學,2017。
    [18] 霍靜思、楊鑫鑫、李智,「考慮初始荷載的火害後RC柱抗震性能」,建築科學與工程學報,36(5),21-30,2019。
    [19] L. Wang and R. K.-L. Su, “Axial behaviour of post-fire RC columns strengthened with post-compressed steel plates”, in Design, Fabrication and Economy of Metal Structures: International Conference Proceedings 2013, April 24-26, 2013, pp. 413-419.
    [20] H. K. Chinthapalli, M. Chellapandian, A. Agarwal, and S. S. Prakash, “Emergency repair of severely damaged reinforced concrete column under fire: An experimental study”, in Proc., 3rd ACF Symp. Asian Concrete Federation, 2019.
    [21] 李其忠、方一匡、何明錦、王天志、蔡銘儒,「聚丙烯纖維自充填混凝土修復火害鋼筋混凝土柱在高溫中後之行為研究」,中國土木水利工程學刊,2014。
    [22] U. Demir, G. Unal, E. Binbir, and A. Ilki, “Cyclic behavior of full-scale RC columns externally jacketed with FRP sheets after fire exposure,” Eccomas Proceedia.–2019. C, pp. 1174-1186, 24-26 June 2019.
    [23] S.-H. Park, N. H. Dinh, J.-W. Um, and K.-K. Choi, “Experimental study on the seismic performance of RC columns retrofitted by lap-spliced textile-reinforced mortar jackets after high-temperature exposure,” Composite Structures, vol. 256, p. 113108, 2021.
    [24] 邱聰智、鍾立來、涂耀賢、賴昱志、曾建創、翁樸文、莊明介、葉勇凱、李其航、林敏郎、王佳憲、沈文成、蕭輔沛、薛強、黃世建,「臺灣結構耐震評估與補強技術手冊(TEASPA V4.0)」,2020。
    [25] ACI Committee 318, “Building code requirements for structural concrete (ACI 318-14) and commentary (ACI 318R-14),” American Concrete Institute, Farmington Hills, MI, 2014, 519 pp.
    [26] ASCE/SEI 41-13, “Seismic Evaluation and Retrofit of Existing Buildings (41-13),” American Society of Civil Engineers (ASCE), Reston, VA, 2014, 518 pp.
    [27] MacGregor, J. G., “Reinforced Concrete:Mechanics and Design. 3rd Edition,” Englewood Cliffs, NJ:Prentice Hall Inc. 1997, 939pp.
    [28] Hwang, S. J., Tsai, R. J., Lam, W. K., and Moehle, J. P. “Simplification of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Region,” ACI Structural Journal, Vol. 114, No. 5, 2017, pp.1239-1248.
    [29] 李宏仁、黃世建,「鋼筋混凝土結構不連續區域之剪力強度評估-軟化壓拉桿模型簡算法之實例應用」,中華民國結構工程學會,結構工程,第17卷,第4期,第53-70頁,2002年。
    [30] Paulary, T., and Priestley, M. J. N., “Seismic Design of Reinforced Concrete and Masonry Buildings,” John Wiley & Sons, Inc., New York, 744 pp., 1992.
    [31] Elwood, K. J., and Moehle, J. P., “Drift capacity of reinforced concrete columns with light transverse reinforcement,” Earthquake Spectra, Vol. 21, No. 1, pp. 71-89, 2005.
    [32] Elwood, K. J., and Moehle, J. P., “Axial capacity model for shear damaged columns,” ACI Structural Journal, Vol. 102, No. 4, pp.578-587, 2005.
    [33] 林峻立,「鋼筋混凝土柱火害後之耐震行為曲線研究」,國立成功大學土木工程研究所,碩士論文,2021。
    [34] ACI Committee 374, “374.1-05: Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary,” American Concrete Institute, 2005.
    [35] 內政部營建署,「結構混凝土施工規範」,2021。
    [36] 經濟部標準檢驗局,「中華民國國家標準 CNS 3090 預拌混凝土」,2015。
    [37] 經濟部標準檢驗局,「中華民國國家標準 CNS 1232 混凝土圓柱試體抗壓強度檢驗法」,2002。
    [38] 經濟部標準檢驗局,「中華民國國家標準 CNS 1238 混凝土鑽心試體及鋸切長條試體取樣法」,2015。
    [39] FEMA, “Prestandard and Commentary for the Seismic Rehabilitation of Buildings,” FEMA 356, Washington D.C., USA, 2000.
    [40] R. Park, “Evaluation of ductility of structures and structural assemblages from laboratory testing,” Bulletin of the new Zealand society for earthquake engineering, vol. 22, no. 3, pp. 155-166, 1989.
    [41] 國家地震工程研究中心、中興工程顧問社,「臺灣結構耐震評估側推分析法TEASPA線上服務網頁使用手冊」,中華民國112年2月。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE