| 研究生: |
陳毅安 Chen, Yi-An |
|---|---|
| 論文名稱: |
螺旋雙曲透鏡分析與設計 Analysis and design of spiral hyperlens |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 螺旋 、雙曲透鏡 、繞射極限 |
| 外文關鍵詞: | spiral, hyperlens, diffraction limit |
| 相關次數: | 點閱:91 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統光學透鏡受限於繞射極限的影響,難以解析小於二分之一個波長的物體,其原因在於高空間頻率的消逝波無法傳遞到遠場,但若使用非等向性超穎材料構成的雙曲透鏡,則可將消逝波轉換成傳遞波並在遠場放大成像。
本文提出螺旋雙曲透鏡的構想,其透鏡是由超穎材料構成,色散曲線為雙曲線,此種特殊的材料性質可將消逝波轉換為傳遞波傳到遠場,具有次波長放大成像的功能。本篇論文設計兩種不同結構的螺旋雙曲透鏡,皆由銀與氧化鋁的薄層堆疊而成,經由本文模擬與分析可得螺旋雙曲透鏡比起圓形雙曲透鏡有更高的成像解析度以及放大倍率。
本文利用有限元素數值模擬軟體COMSOL Multiphysics做分析,探討不同結構、材料堆疊順序和透鏡厚度的雙曲透鏡對次波長解析的影響,經由分析後可得螺旋雙曲透鏡在光源波長為365奈米時,最高解析度可達到100奈米,高於一般常見的圓形雙曲透鏡。
The resolution of conventional optical lens system is restricted by the diffraction limit. The diffraction barrier arises from the fact that high spatial frequency information carried by evanescent waves only exists in the near field. The hyperlens which used anisotropic metamaterial transfers the evanescent waves into propagating waves and produces magnifying images into the far field.
We propose the spiral hyperlenses that are able to image beyond the diffraction limit. The spiral hyperlens is based on a designed metamaterial with hyperbolic dispersion relation, which support wave propagation with high wavevectors. In comparison with cylindrical hyperlens, spiral hyperlens have the advantages of higher images resolution and better images magnification. In this study, we designed two types of spiral hyperlenses composed of silver/alumina multilayers. According to our numerical simulation, far-field imaging resolution is down to 100nm at 365nm working wavelength which is beyond the diffraction limit.
[1] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ”, Soviet Physics Uspekhi, Vol. 10, No. 4, pp. 509-514, (1968).
[2] J. B. Pendry, A. J. Holden, W. J. Stewart, I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures”, Physical Review Letters, Vol. 76, No. 25, pp. 4773-4776, (1996).
[3] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Low Frequency Plasmons in thin-wire structures”, Journal of physics : Condensed Matter, Vol. 10, No. 22, pp. 4785-4809, (1998).
[4] D. R. Smith, D. C. Vier, W. Padilla, S. C. Netmat-Nasser and S. Schultz, “Loop-wire medium for investigating plasmons at microwave frequencies”, Applied Physics Letters, Vol. 75, No. 10, pp. 1425-1427, (1999).
[5] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena”, IEEE Transactions on microwave theory and techniques, Vol. 47, No. 11, pp. 2075-2084, (1999).
[6] D. R. Simth, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity”, Physical Review Letters, Vol. 84, No. 18, pp. 4184-4187, (2000).
[7] D. R. Smith and N. Kroll, ‘‘Negative refractive index in left-handed materials’’, Physical Review Letters, Vol. 85, No. 14, pp. 2933-2936, (2000).
[8] D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, ‘‘Determine of effective permittivity and permeability of materials from reflection and transmission coefficients’’, Physical Review B, Vol. 65, No. 19, 195104, (2002).
[9] R. A. Shelby, D. R. Smith and S. Schultz, ‘‘Experimental verification of a negative index of refraction’’, Science, Vol. 292, No. 5514, pp. 77-79, (2001).
[10] C. M. Soukoulis, S. Linden and M. Wegener, ‘‘Negative refractive index at optical wavelengths’’, Science, Vol. 315, No. 5808, pp. 47-49, (2007).
[11] J. B. Pendry, ‘‘Negative refraction makes perfect lens’’, Physical Review Letters, Vol. 85, No. 18, pp. 3966-3969, (2000).
[12] J. Yao, K. T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y. L. Wang and X. Zhang, ‘‘Imaging visible light using anisotropic metamaterial slab lens’’, Optics Express, Vol. 17, No. 25, pp. 22380-22385, (2009).
[13] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, ‘‘Metamaterial electromagnetic cloak at microwave frequencies’’, Science, Vol. 314, No. 5801, pp. 977-980, (2006).
[14] D. P. Gaillot, C. Croënne and D. Lippens, ‘‘An all-dielectric route for terahertz cloaking’’, Optics Express, Vol. 16, No. 6, pp. 3986-3992, (2008).
[15] B. Edwards, A. Alù, M. G. Silveirinha and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials”, Physical Review Letters, Vol. 103, No. 15, 153901, (2009).
[16] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui and D. R. Smith, ‘‘Broadband ground-plane cloak’’, Science, Vol. 323, No. 5912, pp. 366-369, (2009).
[17] Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch. Mikroskop. Anat, Vol. 9, No.1, pp. 413–418, (1873).
[18] G. Anthony and G. Y. Elenftheriades, “Practical limitationd of Subwavelength
Resolution Using Negtive Refractive Index Transmission Line”, IEEE Transactions
on Microwave Theory and Techniques, Vol. 53, No.10, pp. 3201-3209, (2005).
[19] N. Fang and X. Zhang, “Expremental Study of Transmission Enhancement of
Evanescent Wave Through Silver Films”, Applied Physics A, Vol. 80, No.6, 1315-1325, (2005).
[20] N. Fang and X. Zhang, “Sub-diffraction limited optical imaging with a silver superlens”, Science, Vol. 308, No.5721, pp. 534-537, (2005).
[21] R. J. Blaikie and C. R. Wolf, “Submicron imaging with a planar silver lens”, Applied Physic Letters, Vol. 84, No.22, pp. 4403-4405, (2004).
[22] T. Taubner, D. Korobkin , Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens” , Science, Vol. 313, No.5793, pp. 1595, (2006).
[23] N.Garcia and Niet, “Left Handed materials do not make a perfect lens”,Physical
Review Letters, Vol. 88, No.20, pp. 207403-207407, (2002).
[24] J. B. Pendry and S. A. Ramakrishna, “Near field lenses in two dimensions”, Journal of Physics: Codensed Matter, Vol. 14, No.36, pp. 8463-8479, (2002).
[25] D. R. Smith, J. B. Pendry and S. A. Ramakrishna, “The Asymmetric Lossy Near Perfect Lens”, Journal of Mordern Optics, Vol. 49, No.10, pp. 1747-1762, (2002).
[26] G. Santos, “Universal features of the time evolution of evanescent modes in a left handed Perfect Lens”, Physical Review Letters, Vol. 90, No.7, pp. 077401, (2003).
[27] G. Anthony and G. Y.Elenftheriades, “Growing evanescent waves in negative refractive index transmission line media”, Applied Physical Letters, Vol. 82, No.12, pp. 1815-1817, (2003).
[28] J. B. Pendry and S. A. Ramakrishna, “Removal of absorption and increase in resolution in a near field lens via optical gain”, Physical Review B, Vol. 67, No. 20, pp. 201101, (2003).
[29] D. R. Smith, D. Schurig, M. Rosenbluth and J. B. Pendry, “Limitations on sub-diffraction imaging with a negative refractive index slab”, Applied Physics Letters, Vol. 82, No.10, pp. 1506-1508, (2003).
[30] R. Merlin, “Analytical solution of the almost-perfect-lens problem”, Applied Physics Letters, Vol. 84, No.8, pp. 1506-1508, (2003).
[31] A. N. Lagarkov and V. N. Kissel, “Near-Perfect Imaging in a Focusing System Based on a Left Handed Material Plate”, Physical Review Letters, Vol. 92, No.7, pp. 077401, (2004).
[32] V. Podolskiy and E. E. Narimanov, “Near-sighted superlens”, Opt. Lett, Vol. 30, No.1, pp. 75-77, (2005).
[33] Z. Jacob, L. V. Alekseyev and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit ”, Optics Express, Vol. 14, No.18, pp. 8247–8256, (2006).
[34] A. Salandrino and N. Engheta, “Far-field sub-diffraction optical microscopy using metamaterial crystals: Theory and simulations”, Physics Review B, Vol. 74, No. 7, pp. 075103, (2006).
[35] Z. Liu, H. Lee, Y. Xiong, C. Sun, and Z. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects”, Science, Vol. 315, No. 5819, pp. 1686–1701, (2007).
[36] A. V. Kildishev and E. E. Narimanov, “Impedance-matched hyperlens ”, Optics Letters, Vol. 32, No. 23, pp. 3432-3434, (2007).
[37] Y. Xiong, Z. Liu and X. Zhang, “A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20nm”, Applied Physics Letters, Vol. 94, No. 20, pp. 203108, (2009).
[38] W. Wang, H. Xing, L. Fang, Y. Liu, J. Ma, L. Lin, C. Wang, and X. Luo “Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial”, Optics Express, Vol.16, No. 25, pp. 21142-21148, (2008).
[39] E. J. Smith, Z. Liu, Y. F. Mei and O.G. Schmidt, “System investigation of a rolled-up metamaterial optical hyperlens structure”, Applied Physics Letters, Vol. 95, No.8, pp. 083104, (2009).
[40] G. Shvets, S. Trendafilov, J. B. Pendry and A. Sarychev, “Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays”, Physical Review Letters, Vol. 99, No. 5, pp. 053903, (2007).
[41] A. V. Kildishev and V. M. Shalaev, “Engineering space for light via transformation optics”, Optics Letters, Vol. 33, No. 1, pp. 43–45, (2008).
[42] A.V. Kildishev, U. K. Chettiar, Z. Jacob, V. M. Shalaev and E. E. Narimanov, “Materializing a binary hyperlens design”, Applied Physics Letters, Vol. 94, No. 7, pp. 071102, (2009).
[43] J. Li, L. Fok, X. Yin, G. Bartal and X. Zhang, “Experimental demonstration of an acoustic magnifying hyperlens”, Nature Materials, Vol. 8, No.12, pp. 931-934, (2009).
[44] J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal and X. Zhang , “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies”, Nature Communication, Vol. 1, pp. 143, (2010).
[45] D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging”, Nature Communication, Vol. 3, pp. 1205, (2010).
[46] E. Hecht, OPTICS, 4ed, San Francisco: Addison Wesley, 2002.
[47] L. Novotny and B. Hecht, PRINCIPLES OF NANO-OPTICS, New York: Cambridge University Press, 2006.
[48] B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metal-dielectric system”, Physical Review B, Vol. 74, No. 11, 115116, (2006).
[49] 徐福駿(2012),「雙曲透鏡成像解析度之研究」,國立中央大學光電科學研究所碩士論文。
[50] Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens”, Optical Society of America, Vol. 24, No.10, pp. A52-A59, (2007).
校內:2018-07-25公開