| 研究生: |
李信委 Lee, Hsin-Wei |
|---|---|
| 論文名稱: |
摩擦攪拌製程對AZ31鎂合金擠型材微觀組織及拉伸性質之影響 Influence of Friction Stir Process on Microstructure and Tensile Properties of Extruded AZ31 Mg Alloy |
| 指導教授: |
陳立輝
Chen, Li-Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 摩擦攪拌製程 、鎂合金 、織構 、拉伸性質 、雙晶變形 、加工硬化 |
| 外文關鍵詞: | friction stir process, Mg alloy, texture, tensile properties, twinning, work hardening |
| 相關次數: | 點閱:137 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
AZ31鎂合金由於具有低密度與高比強度等優點,常用於板材成型,同時也因具有極少量第二相而適合於鎂合金基本機械性質之研究。晶粒細化被視為改善鎂合金延性的有效方法,因此本論文以摩擦攪拌製程對AZ31鎂合金擠型材進行表面改質,調查摩擦攪拌前後結晶取向與晶粒結構之變化,並探討攪拌組織特徵對AZ31鎂合金拉伸性質之影響。
金相觀察結果顯示,摩擦攪拌製程可以明顯降低AZ31鎂合金之晶粒徑,同時攪拌材的晶粒徑分布也較原擠型材集中,但在攪拌區中可觀察到有不同大小晶粒交錯排列的帶狀組織。另一方面,X光繞射結果顯示攪拌材的織構特徵為底面圍繞一傾斜軸作旋轉排列,擠型材的織構特徵為底面平行擠型方向排列。
由於攪拌材的織構特性,在平行攪拌方向拉伸時其變形機構以底面滑移與拉伸雙晶為主,因此造成攪拌材的拉伸強度明顯低於擠型材沿擠型方向的拉伸強度;於室溫至300°C拉伸時,攪拌材降伏強度的溫度依存性也較不明顯。此外,由於攪拌區為具不同優選方位區域之組合,因此攪拌材的降伏強度會受變形阻抗最低之區域主導:垂直攪拌方向拉伸時攪拌區外側區域容易產生變形,平行攪拌方向拉伸時則是攪拌區中央兩側強度最低。
降伏強度較低,且於變形過程保持高加工硬化率之材料會有較佳的均勻延伸率,因此攪拌材得以在室溫及100°C具有較擠型材為佳的均勻延伸率與拉伸延性。根據變形組織的觀察結果,攪拌材的加工硬化率提升應歸因於拉伸雙晶所提供之強化效應。提高拉伸溫度至200°C與300°C時,由於缺乏拉伸雙晶對加工硬化之貢獻,同時動態回復或動態再結晶等軟化機制因溫度提升而活化,因而攪拌材之均勻延伸率隨溫度增加而下降。另一方面,由變形組織的觀察可發現在200°C與300°C容易產生晶粒間破壞,因此攪拌材的拉伸延性於200°C與300°C之間隨拉伸溫度上升而略微下降。
除了加工硬化率對均勻延伸率的效應之外,攪拌區內的帶狀結構則是影響攪拌材拉伸延性的另一項因素。拉伸方向平行攪拌方向時攪拌材容易觀察到圓弧形的破斷面缺口;而根據拉伸性質與破斷面觀察,攪拌區內應有變形破壞阻抗較弱之區域,容易在拉伸時成為破壞的起源。由於室溫至300°C都可觀察到圓弧形的破壞特徵,此一延性弱化機制同時也對攪拌材在200°C與300°C之延性降低造成影響。另一方面,垂直攪拌方向拉伸時,攪拌材的拉伸試片則容易在塑性變形強度較低或是組織不均勻性較高之區域產生破壞。
Owing to the advantages such as low mass density and high specific strength, AZ31 Mg-Al-Zn alloy has been used in the sheet forming. Since the alloy contains few second phase particles, it is suitable for the investigation in mechanical properties. Friction stir process (FSP) was developed as a powerful approach to grain refinement for ductility improvement. This thesis adopted FSP in the surface modification of the extruded AZ31 Mg alloy. The aim of this study was to investigate the effects of FSP on the texture and the grain structure of AZ31 Mg alloy, and the influence of microstructural characteristics resulting from FSP on the tensile properties was discussed.
Experimental results showed that grain refinement can be acquired by FSP. The friction stir processed (FSPed) alloy had comparatively homogeneous grain size distribution than the base mental does. However, banded structures combining grains with different grain size can be recognized in the stir zone. X-ray diffraction patterns revealed the rotation of the basal planes tilted from the process direction in the stir zone; meanwhile, the basal planes of the extruded sample aligned parallel to the extrusion direction.
Because of the above-mentioned basal texture in the FSPed alloy, the tensile stress of the FSPed specimen loaded along the process direction was obviously lower than that of the extruded specimen in tension along the extrusion direction, and the yield stress of the FSPed specimen had no obvious temperature dependence. Coupled with the sections of specific orientations, the yield stress of the FSPed specimen was similar to that of the region with the minimum deformation resistance. Loaded perpendicular to process direction, the weak regions were close to the two sides of the stir zone, but the weak regions located close to the center of the stir zone in tension along the process direction.
A better uniform elongation can be acquired by reducing yield stress and increasing work hardening rate, which is responsible for the better tensile ductility of the FSPed specimen at room temperature and 100°C in comparison with that of the extruded specimen. According to the deformed microstructure, the increase of work hardening rate in the FSPed specimen could be referred to the occurrence of the tension twins in the tensile deformation. At 200°C and 300°C, the uniform elongation of the FSPed alloy reduced due to lacking the work hardening contributed by the tension twins. Furthermore, dynamic recovery and dynamic recrystallization were active at 200°C and 300°C, which also caused the reduction of uniform elongation of the tensile specimen. On the other hand, the formation of voids on the grain boundaries was observed in the deformed microstructure of the FSPed specimens. The total elongation of the FSPed specimens decreased with increasing temperature to 200°C and 300°C.
Besides the effect of work hardening rate on the uniform elongation, the existence of banded structures in the stir zone strongly affected the tensile ductility of the FSPed specimens. Loaded along the process direction, the FSPed specimens tended to fracture along an arc shape. From the observation of their fracturing surface, there were some regions with low fracture resistance in the stir zone, and these regions may become the source of fracturing in the tensile deformation of the FSPed specimen. The effect of the banded structure on the fracturing also affected the reducing ductility of FSPed loaded at 200°C to 300°C since the arc-shaped fracturing morphology could be recognized at all test temperatures. In tension perpendicular to the process direction, fracturing developed easily in regions which had low plastic deformation resistance or inhomogeneous grain structure.
1. E. Aghion, B. Bronfin and D. Eliezer, “The Role of the Magnesium Industry in Protecting the Environment”, J. Mater. Process. Technol., 117, pp. 381-385, 2001.
2. J. T. Carter, P. E. Krajewski and R. Verma, “The Hot Blow Forming of AZ31 Mg Sheet: Formability Assessment and Application Development”, JOM, 60(11), pp. 77-81, 2008.
3. W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith and C. J. Dawes, ”Friction Stir Butt Welding”, GB Patent No. 9125978.8, International Patent Application No. PCT/GB92/02203, 1991.
4. R. S. Mishra, M. W. Mahoney, S. X. McFadden, N. A. Mara and A. K. Mukherjee, “High Strain Rate Superplasticity in a Friction Stir Processed 7075 Al Alloy”, Scripta Mater., 42, pp. 163-168, 2000.
5. R. S. Mishra and M. W. Mahoney, “Friction Stir Processing: A New Grain Refinement Technique to Achieve High Strain Rate Superplasticity in Commercial Alloys”, Mater. Sci. Forum, 357-359, 507-514, 2001.
6. W. Woo, H. Choo, D. W. Brown, P. K. Liaw and Z. Feng, “Texture Variation and Its Influence on the Tensile Behavior of a Friction-Stir Processed Magnesium Alloy”, Scripta Mater., 54, pp. 1859-1864, 2006.
7. F. Y. Hung, C. C. Shih, L. H. Chen and T. S. Lui, “Microstructures and High Temperature Mechanical Properties of Friction Stirred AZ31-Mg Alloy”, J. Alloy. Compd., 428, pp. 106-114, 2007.
8. W. Woo, H. Choo, M.B. Prime, Z. Feng and B. Clausen, “Microstructure, Texture and Residual Stress in a Friction-Stir-Processed AZ31B Magnesium Alloy”, Acta Mater., 56, pp. 1701-1711, 2008.
9. F. Y. Hung, T. S. Lui, L. H. Chen and K. J. Zhuang, “Mechanical Properties and Resonant Characteristics of Friction Stirred AZ31-Mg Alloy”, Mater. Trans., JIM, 49(11), pp. 2591-2596, 2008.
10. G. Bhargava, W. Yuan, S. S. Webb and R. S. Mishra, “Influence of Texture on Mechanical Behavior of Friction-Stir-Processed Magnesium Alloy”, Metall. Mater. Trans. A, 41A, pp. 13-17, 2010.
11. Z. Yu, H. Choo, Z. Fengb and S. C. Vogel, “Influence of Thermo-Mechanical Parameters on Texture and Tensile Behavior of Friction Stir Processed Mg Alloy”, Scripta Mater., 63, pp. 1112-1115, 2010.
12. W. Yuan, R. S. Mishra, B. Carlson, R. K. Mishra, R. Verma and R. Kubic, “Effect of Texture on the Mechanical Behavior of Ultrafine Grained Magnesium Alloy”, Scripta Mater., 64, pp. 580-583, 2011.
13. Y. N. Wang, C. I. Chang, C. J. Lee, H. K. Lin and J. C. Huang, “Texture and Weak Grain Size Dependence in Friction Stir Processed Mg-Al-Zn Alloy”, Scripta Mater., 55, pp. 637-640, 2006.
14. S. R. Babu, V. S. S. Kumar and V. Balasubramanian and G. M. Reddy, “Tensile Properties and Microstructural Evolution of Friction Stir Processed Extruded AZ31B Alloy”, Appl. Mech. Mater., 110-116, pp. 606-610, 2012.
15. C. J. Lee, J. C. Huang and X. H. Du, “Improvement of Yield Stress of Friction-Stirred Mg-Al-Zn Alloys by Subsequent Compression”, Scripta Mater., 56, pp. 875-878, 2007.
16. J. A. del Valle, P. Rey, D. Gesto, D. Verdera and O. A. Ruano, “Friction Stir Processing of the Magnesium Alloy AZ61: Grain Size Refinement and Mechanical Properties”, Mater. Sci. Forum, 706-709, pp. 1823-1828, 2012.
17. A. H. Feng and Z. Y. Ma, “Microstructural Evolution of Cast Mg-Al-Zn during Friction Stir Processing and Subsequent Aging”, Acta Mater., 57, pp. 4248-4260, 2009.
18. S. T. Chen, T. S. Lui and L. H. Chen, “Microstructural Stability of Friction Stirred AA 2218 Alloy on Tensile Properties at Elevated Temperature”, Mater. Trans., JIM, 48(3), pp. 510-514, 2007.
19. S. T. Chen, T. S. Lui and L. H. Chen, “Effect of Revolutionary Pitch on the Microhardness Drop and Tensile Properties of Friction Stir Processed 1050 Aluminum Alloy”, Mater. Trans., JIM, 50(8), pp. 1941-1948, 2009.
20. E. A. El-Danaf, M. M. El-Rayes and M. S. Soliman, “Friction Stir Processing: An Effective Technique to Refine Grain Structure and Enhance Ductility”, Mater. Design, 31, pp. 1231-1236, 2010.
21. A. L. Pilchak, D. M. Norfleet, M. C. Juhas and J. C. Willams, “Friction Stir Processing of Investment-Cast Ti-6Al-4V: Microstructure and Properties”, Metall. Mater. Trans. A, 39A, pp. 1519-1524, 2008.
22. Z. Y. Ma, A. L. Pilchak, M. C. Juhas and J. C. Williams, “Microstructural Refinement and Property Enhancement of Cast Light Alloys via Friction Stir Processing”, Scripta Mater., 58, pp. 361-366, 2008.
23. T. W. Cheng, T. S. Lui and L. H. Chen, “Microstructural Features and Erosion Wear Resistance of Friction Stir Surface Hardened Spheroidal Graphite Cast Iron”, Mater. Trans., JIM, 53(1), pp. 167-172, 2012.
24. H. Watanabe, H. Tsutsui, T. Mukai, K. Ishikawa, Y. Okanda, M. Kohzu and K. Higashi, “Grain Size Control of Commercial Wrought Mg-Al-Zn Alloys Utilizing Dynamic Recystallization”, Mater. Trans., JIM, 42(7), pp. 1200-1205, 2001.
25. A. Bussiba, A. B. Artzy, A. Shtechman, Sifergan and M. Kupiec, “Grain Refinement of AZ31 and ZK60 Mg Alloys - Towards Superplasticity Studies”, Mater. Sci. Eng. A, 302, pp. 56-62, 2001.
26. K. Kubota, M. Mabuchi and K. Higashi, “Review Processing and Mechanical Properties of Fine-Grained Magnesium Alloys”, J. Mater. Sci., 34, pp. 2255-2262, 1999.
27. S. E. Ion, F. J. Humphreys and S. H. White, “Dynamic Recrystallisation and the Development of Microstructure during the High Temperature Deformation of Magnesium”, Acta Metall., 30, pp. 1909-1919, 1982.
28. T. Mukai, M. Yamanoi, H. Watanabe and K. Higashi, “Ductility Enhancement in AZ31 Magnesium Alloy by Controlling Its Grain Structure”, Scripta Mater., 45, pp. 89-94, 2001.
29. S. R. Agnew, J. A. Horton, T. M. Lillo and D. W. Brown, “Enhanced Ductility in Strongly Texture Magnesium Produced by Equal Channel Angular Processing”, Scripta Mater., 50, pp. 377-381, 2004.
30. H. K. Lin, J. C. Huang and T. G. Langdon, “Relationship between Texture and Low Temperature Superplasticity in an Extruded AZ31 Mg Alloy Processed by ECAP”, Mater. Sci. Eng. A, 402, pp. 250-257, 2005.
31. J. A. del Valle, M. T. Pérez-Prado and O. A. Ruano, “Texture Evolution during Large-Strain Hot Rolling of the Mg AZ61 Alloy”, Mater. Sci. Eng. A, 355, pp. 68-78, 2003.
32. M. T. Pérez-Prado, J. A. del Valle, J. M. Contreras and O. A. Ruano, “Microstructural Evolution during Large Strain Hot Rolling of an AM60 Mg Alloy”, Scripta Mater., 50, pp. 661-665, 2004.
33. R. B. Figueiredoa and T. G. Langdon, “Development of Structural Heterogeneities in a Magnesium Alloy Processed by High-Pressure Torsion”, Mater. Sci. Eng. A, 528, pp. 4500-4506, 2011.
34. M. T. Pérez-Prado, J. A. del Valle and O.A. Ruano, ”Grain Refinement of Mg-Al-Zn Alloys via Accumulative Roll Bonding”, Scripta Mater., 51, pp. 1093-1099, 2004.
25. R. Xin, B. Li and Q. Liu, “Microstructure and Texture Evolution during Friction Stir Processing of AZ31 Mg Alloy”, Mater. Sci. Forum, 654-656, pp. 1195-1200, 2010.
36. S. H. C. Park, Y. S. Sato and H. Kokawa, “Basal Plane Texture and Flow Pattern in Friction Stir Weld of a Magnesium Alloy”, Metall. Mater. Trans. A, 34A, pp. 987-994, 2003.
37. K. N. Krishnan, “On the Formation of Onion Rings in Friction Stir Welds”, Mater. Sci. Eng. A, 327, pp. 246-251, 2002.
38. B. Yang, J. Yan, M. A. Sutton and A. P. Reynolds, “Banded Microstructure in AA2024-T351 and AA2524-T351 Aluminum Friction Stir Welds Part I. Metallurgical Studies”, Mater. Sci. Eng. A, 364, pp. 55-65, 2004.
39. B. Yang, J. Yan, M. A. Sutton and A. P. Reynolds, “Banded Microstructure in AA2024-T351 and AA2524-T351 Aluminum Friction Stir Welds Part II. Mechanical Characterization”, Mater. Sci. Eng. A, 364, pp. 66-74, 2004.
40. J. A. Schneider and A. C. Nunes, Jr., “Characterization of Plastic Flow and Resulting Microtextures in a Friction Stir Weld”, Metall. Mater. Trans. B, 35B, pp. 777-783, 2004.
41. G. R. Cui, Z. Y. Ma and S. X. Li, “Periodical Plastic Flow Pattern in Friction Stir Processed Al-Mg Alloy”, Scripta Mater., 58, pp. 1082-1085, 2008.
42. K. Kumar and S. V. Kailas, “The Role of Friction Stir Welding Tool on Material Flow and Weld Formation”, Mater. Sci. Eng. A, 485, pp. 367-374, 2008.
43. L. E. Murr and C. Pizaña, “Dynamic Recrystallization: The Dynamic Deformation Regime”, Metall. Mater. Trans. A, 38A, pp. 2611-2628, 2007.
44. M. M. Avedesian and H. Baker, ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM, Metals Park, Ohio, pp. 13-43, 1999.
45. J. A. Esparza, W. C. Davis, E. A. Trillo and L. E. Murr, “Friction-Stir Welding of Magnesium Alloy AZ31B”, J. Mater. Sci. Lett., 21, pp. 917-920, 2002.
46. E. Schmid, "Beiträge zur Physik und Metallographie des Magnesiums", Z. Elektrochem., 37(8-9), pp. 447-459, 1931.
47. P. W. Bakarian and C. H. Mathewson, “Slip and Twinning of Magnesium Single Crystals at Elevated Temperatures”, Trans. AIME, 152, pp. 226-254, 1943.
48. E. C. Burke and W. R. Hibbard, Jr., “Plastic Deformation of Magnesium Single Crystals”, Trans. AIME, 194, pp. 295-303, 1952.
49. S. S. Hsu and B. D. Cullity, “On the Torsional Deformation and Recovery of Single Crystals”, Trans. AIME, 200, pp. 305-312, 1954.
50. H. Conrad and W. D. Robertson, “Effect of Temperature on the Flow Stress and Strain-Hardening Coefficient of Magnesium Single Crystals”, Trans. AIME, 209, pp. 503-512, 1957.
51. W. F. Sheely and R. R. Nash., “Mechanical Properties of Magnesium Monocrystals”, Trans. Metall. Soc. AIME, 218, pp.416-422, 1960.
52. K. Sugimoto, K. Matsui, T. Okamoto and K. Kishitake, “Effect of Crystal Orientation on Amplitude-Dependent Damping in Magnesium”, Mater. Trans., JIM, 16(10), pp. 647-656, 1975.
53. R. E. Reed-Hill and W. D. Robertson, “Additional Modes of Deformation Twinning in Magnesium”, Acta Metall., 5, pp. 717-727, 1957.
54. R. E. Reed-Hill and W. D. Robertson, “Deformation of Magnesium Single Crystals by Nonbasal Slip”, Trans. Metall. Soc. AIME, 220, pp. 496-502, 1957.
55. A. Couret and D. Caillard, “An in situ Study of Prismatic Glide in Magnesium-I. The Rate Controlling Mechanism”, Acta Metall., 33, pp. 1447-1454, 1985.
56. T. Obara, H. Yoshinga and S. Morozumi, “{1122}<1123> Slip System in Magnesium”, Acta Metall., 21, pp. 845-853, 1973.
57. G. S. Rao and Y. V. R. K. Prasad, “Grain Boundary Strengthening in Strongly Textured Magnesium Produced by Hot Rolling”, Metall. Trans. A, 13A, pp. 2219-2226, 1982.
58. B. C. Wonsiewicz and W. A. Backofen, “Plasticity of Magnesium Crystals”, Trans. Metall. Soc. AIME, 239, pp. 1422-1431, 1967.
59. H. Yoshinaga and R. Horiuchi, “Deformation Mechanisms in Magnesium Single Crystals Compressed in the Direction Parallel to Hexagonal Axis”, Mater. Trans., JIM, 4(1), pp. 1-8, 1963.
60. C. S. Roberts, Magnesium and Its Alloys, John Wiley and Sons, New York, pp. 180, 1960.
61. S. R. Agnew, M. H. Yoo and C. N. Tomé, “Application of Texture Simulation to Understanding Mechanical Behavior of Mg and Solid Solution Alloys Containing Li or Y”, Acta Mater., 49, pp. 4277-4289, 2001.
62. P. W. Flynn, J. Mote and J. E. Dorn, “On the Thermally Activated Mechanism of Prismatic Slip in Magnesium Single Crystals”, Trans. Metall. Soc. AIME, 221, pp. 1148-1154, 1961.
63. A. Amadieh, J. Mitchell and J. E. Dorn, “Lithium Alloying and Dislocation Mechanisms for Prismatic Slip in Magnesium”, Trans. Metall. Soc. AIME, 233, pp. 1130-1137, 1965.
64. J. F. Stohr and J. P. Poirier, “Etude en Microscopie Electronique du Glissement Pyramidal {112 ̅2}〈112 ̅3〉 dans le Magnesium”, Phil. Mag., 25(6), pp. 1313-1329, 1972.
65. S. R. Agnew, C. N. Tomé, D.W. Brown, T. M. Holden and S. C. Vogel, “Study of Slip Mechanisms in a Magnesium Alloy by Neutron Diffraction and Modeling“, Scripta Mater., 48, pp. 1003-1008, 2003.
66. A. Styczynski, C. Hartig, J. Bohlen and D. Letzig, “Cold Rolling Textures in AZ31 Wrought Magnesium Alloy”, Scripta Mater., 50, pp. 943-947, 2004.
67. S. R. Agnew and O. Duygulu, “A Mechanistic Understanding of the Formability of Magnesium: Examining the Role of Temperature on the Deformation Mechanisms”, Mater. Sci. Forum, 419-422, pp. 177-188, 2003.
68. D. W. Brown, S. R. Agnew, M. A. M. Bourke, T. M. Holden, S. C. Vogel and C. N. Tomé, “Internal Strain and Texture Evolution during Deformation Twinning in Magnesium”, Mater. Sci. Eng. A, 399, pp. 1-12, 2005.
69. M. R. Barnett, “A Taylor Based Description of the Proof Stress of Magnesium AZ31 during Hot Working”, Metall. Mater. Trans. A, 34A, pp. 1799-1806, 2003.
70. H. Li, E. Hsu, J. Szpunar, R. Verma and J. T. Carter, “Determination of Active Slip/Twinning Modes in AZ31 Mg Alloy near Room Temperature”, J. Mater. Eng. Perform., 16(3), pp. 321-326, 2007.
71. R. von Mises, “Mechanics of Plastic Deformation in Crystals”, Z. Angew. Math. Mech., 8, pp. 161-185, 1928.
72. G. W. Groves and A. Kelly, “Independent Slip Systems in Crystal”, Philos. Mag., 8, pp. 877-887, 1963.
73. M. H. Yoo, “Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals”, Metall. Trans. A, 12, pp. 409-418, 1981.
74. M. R. Barnett, “Twinning and the Ductility of Magnesium Alloys Part II: “Contraction” Twins”, Mater. Sci. Eng. A, 464, pp. 8-16, 2007.
75. L. Jiang and J. J. Jonas, “Effect of Twinning on the Flow Behavior during Strain Path Reversals in Two Mg (+Al, Zn, Mn) Alloys”, Scripta Mater., 58, pp. 803-806, 2008.
76. E. Schmid and W. Boas, Kristallplastizität, Julius Springer, Berlin, 1935.
77. S. R. Agnew and O. Duygulu, “Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B”, Int. J. Plasticity, 21, pp. 1161-1193, 2005.
78. X. Y. Lou, M. Li, R. K. Boger, S. R. Agnew and R. H. Wagoner, “Hardening Evolution of AZ31B Mg Sheet”, Int. J. Plasticity, 23, pp. 44-86, 2007.
79. S. Kleiner and P. J. Uggowitzer, “Mechanical Anisotropy of Extruded Mg-6%Al-1%Zn Alloy”, Mater. Sci. Eng. A, 379, pp. 258-263, 2004.
80. J. Koike, “Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature”, Metall. Mater. Trans. A, 36A, pp. 1689-1696, 2005.
81. J. Koike, Y. Sato and D. Ando, “Origin of the Anomalous {1012} Twinning during Tensile Deformation of Mg Alloy Sheet”, Mater. Trans., JIM, 49(12), pp. 2792-2800, 2008.
82. H. Somekawa and T. Mukai, “Effect of Texture on Fracture Toughness in Extruded AZ31 Magnesium Alloy”, Scripta Mater., 53, pp. 541-545, 2005.
83. Y. N. Wang and J. C. Huang, “Texture Characteristics and Anisotropic Superplasticity of AZ61 Magnesium Alloy”, Mater. Trans., JIM, 44(11), pp. 2276-2281, 2003.
84. S. B. Yi, H. G. Brokmeier, R. Bolmaro, K. U. Kainer and J. Homeyer, “The Texture Evolutions of Mg Alloy, AZ31, under Uni-Axial Loading”, Mater. Sci. Forum, 495-497, pp. 1585-1590, 2005.
85. W. S. Chang, H. J. Kim, J. S. Noh and H. S. Bang, “The Evaluation of Weldability for AZ31B-H24 and AZ91C-F Mg Alloys in Friction Stir Welding”, Key Eng. Mater., 321-323, pp. 1723-1728, 2006.
86. J. Liao, N. Yamamoto and K. Nakata, “Effect of Dispersed Intermetallic Particles on Microstructural Evolution in the Friction Stir Weld of a Fine-Grained Magnesium Alloy”, Metall. Mater. Trans. A, 40A, pp. 2212-2219, 2009.
87. M. W. Mahoney, C. G. Rhodes, J. G. Flintoff, R. A. Spurling and W. H. Bingel, “Properties of Friction-Stir-Welded 7075 T651 Aluminum”, Metall. Mater. Trans. A, 29A, pp. 1955-1964, 1998.
88. W. D. Lockwood and A. P. Reynolds, “Simulation of the Global Response of a Friction Stir Weld Using Local Constitutive Behavior”, Mater. Sci. Eng. A, 339, pp. 35-42, 2003.
89. F. Gratecap, M. Girard, S. Marya and G. Racineux, “Exploring Material Flow in Friction Stir Welding: Tool Eccentricity and Formation of Banded Structures”, Int. J. Mater. Form., 4, pp. 1-9, 2011.
90. D. K. Matlock, F. Zia-Ebrahimi and G. Krauss, “Structure Properties, and Strain Hardening of Dual-Phase Steels”, In: G. Krauss (Ed.), Deformation, Processing, and Structure, ASM, Metals Park, Ohio, pp. 47-87, 1984.
91. R. E. Reed-Hill, “Role of Deformation Twinning in Determining the Mechanical Properties of Metals”, In: R. E. Reed-Hill (Ed.), The Inhomogeneity of Plastic Deformation, ASM, Metals Park, Ohio, pp. 285-311, 1973.
92. M. R. Barnett, Z. Keshavarz, A. G. Beer and D. Atwell, “Influence of Grain Size on the Compressive Deformation of Wrought Mg-3Al-1Zn”, Acta Mater., 52, pp. 5093-5103, 2004.
93. L. Jiang, J. J. Jonas, A. A. Luo, A. K. Sachdev and S. Godet, “Influence of {1012} Extension Twinning on the Flow Behavior of AZ31 Mg Alloy”, Mater. Sci. Eng. A, 445-446, pp. 302-309, 2007.
94. P. Dobroň, F. Chmelík, S. Yi, K. Parfenenko, D. Letzig and J. Bohlen, “Grain Size Effects on Deformation Twinning in an Extruded Magnesium Alloy Tested in Compression”, Scripta Mater., 65, pp. 424-427, 2011.
95. A. Chaderi and M. R. Barnett, “Sensitivity of Deformation Twinning to Grain Size in Titanium and Magnesium”, Acta Mater., 59, pp. 7824-7839, 2011.
96. M. R. Barnett, “Twinning and the Ductility of Magnesium Alloys Part I: “Tension” Twins”, Mater. Sci. Eng. A, 464, pp. 1-7, 2007.
97. F. J. Humphreys and M. Hatherley, “Hot Deformation and Dynamic Restoration”, Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd., Oxford, pp. 363-392, 2004.
98. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama and K. Higashi, “The Activity of Non-Basal Slip Systems and Dynamic Decovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys”, Acta Mater., 51, pp. 2055-2065, 2003.
99. M. M. Myshlyaev, H. J. McQueen, A. Mwembela and E. Konopleva, “Twinning, Dynamic Recovery and Recrystallization in Hot Worked Mg-Al-Zn Alloy”, Mater. Sci. Eng. A, 337, pp. 121-133, 2002.
100. A. Jäger, P. Lukáč, V. Gärtnerová, J. Bohlen and K. U. Kainer, “Tensile Properties of Hot Rolled AZ31 Mg Alloy Sheets at Elevated Temperatures”, J. Alloy. Compd., 378, pp. 184-187, 2004.
101. X. Yang, H. Miura and T. Sakai, “Dynamic Evolution of New Grains in Magnesium Alloy AZ31 during Hot Deformation”, Mater. Trans., JIM, 44(1), pp. 197-203, 2003.
102. R. S. Mishra and Z.Y. Ma, “Friction Stir Welding and Processing”, Mater. Sci. Eng. R, 50, pp. 1-78, 2005.
103. Z. Y. Ma, R. S. Mishra and M. W. Mahoney, “Superplastic Deformation Behaviour of Friction Stir Processed 7075Al Alloy”, Acta Mater., 50, pp. 4419-4430, 2002.
104. B. M. Darras, M. K. Khraisheh, F. K. Abu-Farha, M. A. Omar, “Friction Stir Processing of Commercial AZ31 Magnesium Alloy”, J. Mater. Process. Technol., 191, pp. 77-81, 2007.
105. Y. N. Wang and J. C. Huang, “Texture Analysis in Hexagonal Materials”, Mater. Chem. Phys., 81, pp. 11-26, 2003.
106. E. O. Hall, “The Deformation and Ageing of Mild Steel: III Discussion of Results”, Proc. Phys. Soc. B, 64, pp. 747-753, 1951.
107. N. J. Petch, “The Cleavage Strength of Polycrystals”, J. Iron Steel Inst., 174, pp. 25-28, 1953.
108. R. W. Armstrong, “Theory of the Tensile Ductile-Brittle Behavior of Polycrystalline H.C.P. Materials, with Application to Beryllium”, Acta Metall., 16, pp. 347-355, 1968.
109. R. W. Armstrong, I. Codd, R. M. Douthwaite and N. J. Petch, “The Plastic Deformation of Polycrystalline Aggregates”, Philos. Mag., 7, pp. 45-58, 1962.
110. W. Yuan, S. K. Panigrahi, J. Q. Su and R. S. Mishra, “Influence of Grain Size and Texture on Hall-Petch Relationship for a Magnesium Alloy”, Scripta Mater., 65, pp. 994-997, 2011.
111. A. S. Argon, “Stability of Plastic Deformation”, In: R. E. Reed-Hill (Ed.), The Inhomogeneity of Plastic Deformation, ASM, Metals Park, Ohio, pp. 161-189, 1973.
112. M. A. Meyers, O. Vöhringer and V.A. Lubarda, “The Onset of Twinning in Metals: a Constitutive Description”, Acta Mater., 49, pp. 4025-4039, 2001.
113. J. Koike, R. Ohyama, T. Kobayashi, M. Suzuki and K. Maruyama, “Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523K”, Mater. Trans., JIM, 44(4), pp. 445-451, 2003.
114. N. Ono, K. Nakamura and S. Miura, “Influence of Grain Boundaries on Plastic Deformation in Pure Mg and AZ31 Mg Alloy Polycrystals”, Mater. Sci. Forum, 419-422, pp. 195-200, 2003.
115. A. Jain and S. R. Agnew, “Modeling the Temperature Dependent Effect of Twinning on the Behavior of Magnesium Alloy AZ31B Sheet”, Mater. Sci. Eng. A, 462, pp. 29-36, 2007.
116. Z. Trojanová, Z. Drozd, P. Lukáč, K. Máthis, H. Ferkel and W. Riehemann, “Thermally Activated Processes in Microcrystalline Mg”, Scripta Mater., 42, pp. 1095-1100, 2000.
117. Y. B. Chun and C. H. J. Davies, “Twinning-Induced Anomaly in the Yield Surface of Highly Textured Mg-3Al-1Zn Plate”, Scripta Mater., 64, pp. 958-961, 2011.
118. C. J. Lee, J. C. Huang and X. H. Du, “Using Multiple FSP Passes to Cure Onion Splitting of Mg Alloys Deformed at Elevated Temperatures”, Mater. Trans., JIM, 48(4), pp. 780-786, 2007.
119. Y. Yoshida, L. Cisar, S. Kamado and Y. Kojima, “Effect of Microstructural Factors on Tensile Properties of an ECAE-Processed AZ31 Magnesium Alloy”, Mater. Trans., JIM, 44(4), pp. 468-475, 2003.
120. R. Xin, B. Li, A. Liao, Z. Zhou and Qing Liu, “Correlation Between Texture Variation and Transverse Tensile Behavior of Friction-Stir-Processed AZ31 Mg Alloy”, Metall. Mater. Trans. A, 43A, pp. 2500-25089, 2012.
121. M. Pareek, A. Polar, F. Rumiche and J. E. Indacochea, “Metallurgical Evaluation of AZ31B-H24 Magnesium Alloy Friction Stir Welds”, J. Mater. Eng. Perform., 16(5), pp. 655-661, 2007.
122. S. Lim, S. Kim, C. G. Lee, S. J. Kim and C. D. Yim, “Tensile Behavior of Friction-Stir-Welded AZ31-H24 Mg Alloy”, Metall. Mater. Trans. A, 36A, pp. 1609-1612, 2005.
123. Y. S. Sato, H. Takauchi, S. H. C. Park and H. Kokawa, “Characteristics of the Kissing-Bond in Friction Stir Welded Al Alloy 1050”, Mater. Sci. Eng. A, 405, pp. 333-338, 2005.
124. N. Afrin, D. L. Chen, X. Cao and M. Jahazi, “Microstructure and Tensile Properties of Friction Stir Welded AZ31B Magnesium Alloy”, Mater. Sci. Eng. A, 472, pp. 179-186, 2008.
W. F. Hosford, “Appendix 1 Angular Relations”, The Mechanics of Crystals and Textured Polycrystals, Oxford University Press, New York, pp. 201-218, 1993.