簡易檢索 / 詳目顯示

研究生: 張祐菘
Chang, Yu-Sung
論文名稱: 以石墨烯製作介電彈性致動器
Graphene-based Dielectric Elastomer Actuator
指導教授: 謝馬利歐
Mario Hofmann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 61
中文關鍵詞: 石墨烯介電彈性制動器微機電系統覆晶技術
外文關鍵詞: Graphene, Dielectric elastomer actuator, MEMS, Flip chip aligner
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,石墨烯相關的開發及研究是炙手可熱,絕佳的材料特性為主要原因,包含其在微觀的尺度下,高強度及高導電特性的表現。因此,我們打算利用石墨烯此特性,來做為介電彈性制動器之電極材料,並測量制動器在通電之下的形變量。

    在驗證納入石墨烯的介電彈性制動器之設計結構及有了初步測量結果後,為了要製作有更多層結構、性能更好的介電彈性制動器,我們縮小制動器的尺寸,使其未來有納入微機電系統的可能性,並設計了一個可以製做微觀尺寸制動器的製程,同時也設計了一造價相對便宜卻可以擁有覆晶技術概念之儀器來輔佐製程。此製程目前可製做出兩層微觀的介電彈性制動器之結構。

    These days, research related to graphene has expand wildly, due to its perfect material properties, including high strength and high electronic conductivity under Nano-scale. Therefore, we would like to utilize this properties, to incorporate graphene into dielectric elastomer actuator (DEA) then measure its performance.

    After confirming designed structure and having preliminary result, in order to make better performance of DEA with more layer structure, we scale down the size of DEA to micro size, making it possible to integrate into MEMS in the future. Besides designing its scaling down process, we also make a relative cheap flip chip aligner to help us make device. Now the process can make two layers of DEA structure in micro scale.

    Chapter 1 Introduction 1 1.1 What is an actuator? 1 1.1.1 MEMS, NEMS actuators 2 1.2 Challenges of Nano-actuators 4 1.2.1 The promise of dielectric elastomer actuators (DEAs) 5 1.2.2 Methods to increase DEA strain 6 1.2.3. Requirements for electrodes 8 1.3 Graphene electrodes 9 1.3.1 What is graphene 10 1.3.2 Synthesis of graphene 11 1.3.3 Graphene transfer 14 Chapter 2 Methods 20 2.1 Spin coating 20 2.2 Evaporation 21 2.3 Reactive-ion-etching (RIE) 22 Chapter 3 Macroscopic Prototype Actuator 24 3.1 Designing structure & Method 24 Measurement & Analysis 25 Result 29 3.2 Graphene-based DEAs 29 Property of graphene 29 Property of PDMS 30 3.3 Operation 31 Measurement & Analysis 32 Result 33 3.4 Optimization 33 COMSOL simulation 33 PDMS thickness 34 Setting up measurement 37 Result 39 Chapter 4 Road to Scaling down 41 4.1 Why scale down? 41 4.2 Approach: Fold-release and repeat 42 4.3 Aligner 43 Version 1 44 Version 2 46 Version 3 47 Version 4 48 4.4 Challenges 49 4.5 Result 49 4.6 Discussion 53 Chapter 5 Outlook 55 5.1 Ultrathin PDMS film 55 Result 55 5.2 Lithographic wire mesh pattern 57 Result 58 5.3 Future work 58 Reference 59

    1 Hierold, C., Jungen, A., Stampfer, C. & Helbling, T. Nano electromechanical sensors based on carbon nanotubes. Sens. Actuator A-Phys. 136, 51-61, doi:10.1016/j.sna.2007.02.007 (2007).
    2 Judy, J. W. Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater. Struct. 10, 1115-1134, doi:10.1088/0964-1726/10/6/301 (2001).
    3 Zhu, Y., Corigliano, A. & Espinosa, H. D. A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J. Micromech. Microeng. 16, 242-253, doi:10.1088/0960-1317/16/2/008 (2006).
    4 Cai, H. et al. Nano-opto-mechanical actuator driven by gradient optical force. Appl. Phys. Lett. 100, 3, doi:10.1063/1.3673854 (2012).
    5 Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532-1535, doi:10.1126/science.290.5496.1532 (2000).
    6 Zang, X. N., Zhou, Q., Chang, J. Y., Liu, Y. M. & Lin, L. W. Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron. Eng. 132, 192-206, doi:10.1016/j.mee.2014.10.023 (2015).
    7 Collins, P. G., Bradley, K., Ishigami, M. & Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287, 1801-1804, doi:10.1126/science.287.5459.1801 (2000).
    8 Fuhrer, M. S. GRAPHENE Ribbons piece-by-piece. Nat Mater 9, 611-612 (2010).
    9 Kovacs, G., During, L., Michel, S. & Terrasi, G. Stacked dielectric elastomer actuator for tensile force transmission. Sens. Actuator A-Phys. 155, 299-307, doi:10.1016/j.sna.2009.08.027 (2009).
    10 Feinberg, A. W. et al. Muscular thin films for building actuators and powering devices. Science 317, 1366-1370, doi:10.1126/science.1146885 (2007).
    11 Pelrine, R. E., Kornbluh, R. D. & Joseph, J. P. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuator A-Phys. 64, 77-85, doi:10.1016/s0924-4247(97)01657-9 (1998).
    12 Ahmed, S., Ounaies, Z. & Frecker, M. Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures. Smart Mater. Struct. 23, 14, doi:10.1088/0964-1726/23/9/094003 (2014).
    13 Rosset, S. & Shea, H. R. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A-Mater. Sci. Process. 110, 281-307, doi:10.1007/s00339-012-7402-8 (2013).
    14 Jo, G. et al. The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23, 19, doi:10.1088/0957-4484/23/11/112001 (2012).
    15 Wang, X., Zhi, L. J. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323-327, doi:10.1021/nl072838r (2008).
    16 Di, C. A. et al. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv. Mater. 20, 3289-+, doi:10.1002/adma.200800150 (2008).
    17 Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598-4810, doi:10.1039/c4nr01600a (2015).
    18 Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat Mater 6, 183-191, doi:Doi 10.1038/Nmat1849 (2007).
    19 Losurdo, M., Giangregorio, M. M., Capezzuto, P. & Bruno, G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chem. Phys. 13, 20836-20843, doi:10.1039/c1cp22347j (2011).
    20 Munoz, R. & Gomez-Aleixandre, C. Review of CVD Synthesis of Graphene. Chem Vapor Depos 19, 297-322, doi:10.1002/cvde.201300051 (2013).
    21 Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5, 574-578, doi:10.1038/nnano.2010.132 (2010).
    22 Liang, X. L. et al. Toward Clean and Crackless Transfer of Graphene. ACS Nano 5, 9144-9153, doi:10.1021/nn203377t (2011).
    23 Barin, G. B. et al. Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon 84, 82-90, doi:10.1016/j.carbon.2014.11.040 (2015).
    24 Song, J. et al. A general method for transferring graphene onto soft surfaces. Nat Nanotechnol 8, 356-362, doi:10.1038/Nnano.2013.63 (2013).
    25 Caldwell, J. D. et al. Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates. ACS Nano 4, 1108-1114, doi:10.1021/nn901585p (2010).
    26 Chu, P. K., Chen, J. Y., Wang, L. P. & Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R-Rep. 36, 143-206, doi:10.1016/s0927-796x(02)00004-9 (2002).
    27 Williams, K. R., Gupta, K. & Wasilik, M. Etch rates for micromachining processing - Part II. J. Microelectromech. Syst. 12, 761-778, doi:10.1109/jmems.2003.820936 (2003).
    28 Garra, J. et al. Dry etching of polydimethylsiloxane for microfluidic systems. J. Vac. Sci. Technol. A-Vac. Surf. Films 20, 975-982, doi:10.1116/1.1460896 (2002).
    29 Leendert.Ja. INTERFEROMETRIC DISPLACEMENT MEASUREMENT ON SCATTERING SURFACES UTILIZING SPECKLE EFFECT. Journal of Physics E-Scientific Instruments 3, 214-&, doi:10.1088/0022-3735/3/3/312 (1970).
    30 Bobroff, N. RECENT ADVANCES IN DISPLACEMENT MEASURING INTERFEROMETRY. Meas. Sci. Technol. 4, 907-926, doi:10.1088/0957-0233/4/9/001 (1993).
    31 Wahl, K. J., Chromik, R. R. & Lee, G. Y. Quantitative in situ measurement of transfer film thickness by a Newton's rings method. Wear 264, 731-736, doi:10.1016/j.wear.2007.04.009 (2008).
    32 Shan, C. S. et al. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Anal. Chem. 81, 2378-2382, doi:10.1021/ac802193c (2009).
    33 Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710, doi:10.1038/nature07719 (2009).
    34 Koschwanez, J. H., Carlson, R. H. & Meldrum, D. R. Thin PDMS Films Using Long Spin Times or Tert-Butyl Alcohol as a Solvent. PLoS One 4, 5, doi:10.1371/journal.pone.0004572 (2009).
    35 Thangawng, A. L., Ruoff, R. S., Swartz, M. A. & Glucksberg, M. R. An ultra-thin PDMS membrane as a bio/micro-nano interface: fabrication and characterization. Biomed. Microdevices 9, 587-595, doi:10.1007/s10544-007-9070-6 (2007).
    36 Shankar, R., Ghosh, T. K. & Spontak, R. J. Dielectric elastomers as next-generation polymeric actuators. Soft Matter 3, 1116-1129, doi:10.1039/b705737g (2007).
    37 Ganta, D., Marry, C., Ma, J. & Sinha, S. Hydrophobic recovery in ultrathin PDMS-coated long and short silicon nanowires. Chemical Physics Letters 647, 175-180, doi:10.1016/j.cplett.2016.01.058 (2016).
    38 Henrie, J., Kellis, S., Schultz, S. M. & Hawkins, A. Electronic color charts for dielectric films on silicon. Opt. Express 12, 1464-1469, doi:10.1364/opex.12.001464 (2004).

    無法下載圖示 校內:2021-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE