簡易檢索 / 詳目顯示

研究生: 藍志傑
Lan, Chih-Jie
論文名稱: 固相合成法製備SrWO4:RE、M(RE=Pr、Dy,M=Na、K、Nb)及其光譜性質之研究
Preparation and Spectroscopic property of SrWO4:RE、M(RE=Pr、Dy,M=Na、K、Nb) by Solid-State Reaction
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 91
中文關鍵詞: 螢光粉螢光光譜SrWO4
外文關鍵詞: Phosphor, photoluminescence spectroscopy, SrWO4
相關次數: 點閱:53下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用固相合成法製備不含稀土離子的螢光粉主體SrWO4,分別摻雜Pr3+以及Dy3+作為發光中心,並分別添加Na+、K+、Nb5+作為電荷補償離子,探討材料煆燒溫度、摻雜濃度、以及電荷補償後對主體晶格結構和螢光性質的影響。
      Sr1-2x(RE,M)xWO4和Sr1-xRExW1-xNbxO4 (x=0.005~0.1; RE=Pr3+, Dy3+; M=K+, Na+)螢光粉體在1100℃的溫度下煆燒後,由XRD繞射結果證實,可形成純相的正交晶系之鎢酸鈣礦結構。從吸收光譜的結果顯示,主體晶格的能帶間隙大約在3.5eV(354nm)。
      螢光光譜顯示摻雜Pr3+的螢光粉體,可在448nm激發光下同時發出487nm (3P0→3H4)的藍光和647nm (3P0→3F2)的紅光,其最佳發光濃度為1.0 at%,換算出的CIE色度座標落在(x=0.30, y=0.35)的白光區內。至於摻雜Dy3+的螢光粉體,可在351nm的激發光下同時發出486nm (4F9/2→6H15/2)的藍光和574nm (4F9/2→6H13/2)的黃光,其中黃光的強度比藍光強很多,換算出的CIE色度座標為(x=0.39, y=0.43),座落在黃綠光區。最強發光的摻雜濃度為3 at%。
      電荷補償離子對螢光強度的影響取決於不同的稀土離子。對於Pr3+而言,若以Na+或K+作為電荷補償離子,螢光強度和淬滅濃度都有下降的趨勢,而在以Nb5+離子當作電荷補償的情況下,其螢光強度會有提升。對於Dy3+而言,添加Na+或K+離子有助於螢光強度的提升,而添加Nb5+離子卻使螢光強度明顯地下降。

    A series of phosphors, Sr1-2x(RE,M)xWO4 and Sr1-xRExW1-xNbxO4 (x=0.005~0.1; RE=Pr3+, Dy3+; M=K+, Na+), were synthesized by the high temperature solid-state reaction, in order to develop a novel host material, SrWO4, which does not contain any rare-earth element. The effects on the luminescent properties of the optical center density (i.e. the RE concentration) and the charge compensation by K+, Na+ and Nb5+, as well as the influences of sintering temperature on the host crystal structure, were investigated by a series of techniques.
    X-ray diffraction confirmed that the phosphors sintered at 1100℃ were of a pure phase with the tetragonal Scheelite structure. The band gap of the host crystal was measured to be around 3.5 eV by the absorption spectra. For the Pr3+ doped phosphors, the photoluminescence spectra showed that under the excitation light of 448 nm, two main emissions at 487nm (blue, 3P0→3H4) and 647nm (red, 3P0→3F2) were observed. The two could be mixed to give out a white light with the CIE chromaticity coordinates located at (x=0.30, y=0.35). The optimum Pr3+ concentration was found to be 1.0 at.%. For the Dy3+ doped phosphors, a strong yellow emission at 574nm (4F9/2→6H13/2) and a weak blue emission at 486nm (4F9/2→6H15/2) were observed under the UV excitation of 351nm. The blend of the two emissions gave out a chartreuse light, corresponding to the CIE chromaticity coordinates of (x=0.39, y=0.43). The Dy3+ concentration for the maximum emission intensity was 3.0 at.%.
    The effects of the charge compensation ions were dependent on the type of the optical center. For Pr3+, the addition of K+ or Na+ was actually not beneficial, causing a deduction of both the emission intensity and the optimum doping concentration, whereas the addition of Nb5+ did increase the intensity of photoluminescence. In contrast, for Dy3+, doping of K+ or Na+ increased the photoluminescence intensity while Nb5+ caused a decrease of the intensity.

    摘要 I ABSTRACT III 誌謝 V 總目錄 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 理論基礎與文獻回顧 3 2.1 螢光材料簡介 3 2.2 螢光材料分類 4 2.2-1 材料特性分類 4 2.2-2 材料組成分類 5 2.2-3 發光中心 5 2.3 螢光材料組成與設計 7 2.3-1 主體材料的選擇 7 2.3-2 活化劑 9 2.3-3 抑制劑 10 2.4 螢光材料合成方法 11 2.4-1 固相合成法(Solid-State Method) 11 2.4-2 溶膠凝膠法(Sol-Gel Method) 11 2.4-3 檸檬酸法(Citric Acid Method) 12 2.4-4 水熱法(Hydrothermal Method) 12 2.4-5 共沉法(Co-precipitation Method) 13 2.4-6 燃燒法(Combustion Method) 13 2.4-7微波輔助合成法(Microwave Assisted Method) 14 2.5 發光原理 15 2.5-1法蘭克-康頓原理(Franck-Condon Principle) 15 2.5-2史托克位移(Stokes Shift) 16 2.5-3 LaPorte選擇律和自旋選擇定則 17 2.5-3晶格場理論(Crystaline Field Theory) 17 2.5-4發光效率 19 2.6 影響發光效率的因素 21 2.6-1基質晶格效應 21 2.6-2 濃度淬滅 21 2.6-3 熱淬滅 23 2.7 SrWO4結構(scheelite-type) 24 2.8 色彩簡介 27 2.8-1 視覺敏感度 27 2.8-2 CIE 色度座標圖(CIE Chromaticity Diagram) 28 2.8-3色溫 32 第三章 實驗方法與步驟 34 3.1實驗概述 34 3.2 實驗原料 34 3.3 實驗流程 35 3.3-1利用固相法製備SrWO4 :RE(RE=Pr3+、Dy3+)螢光粉 35 3.3-2固相法製備SrWO4 :Pr3+及SrWO4 :Dy3+參雜Na、K、Nb 35 3.4 分析與量測方法 41 3.4-1 X光繞射分析(X-Ray Diffraction Analysis) 41 3.4-2 掃描式電子顯微鏡(SEM) 41 3.4-3 光致發光譜(Potoluminescence Spectrum) 41 3.4-3 衰減時間(Decay time) 41 3.4-4 吸收光譜(absorption spectrum) 42 3.4-5 拉曼光譜(Raman spectrum) 42 第四章 結果與討論 43 4.1 相結構分析 43 4.1-1 固相法製備SrWO4:Pr3+ 43 4.1-2 製備SrWO4:Pr3+,M+(M=K,Na) 46 4.1-2-1製備SrWO4:Pr3+,K+ 46 4.1-2-2製備SrWO4:Pr3+,Na+ 49 4.1-2-3製備SrWO4:Pr3+,Nb5+ 52 4.2 紫外-可見光吸收光譜 54 4.3 拉曼光譜分析 57 4.4 螢光光譜分析 58 4.4-1 SrWO4:Pr3+螢光光譜 58 4.4-2 SrWO4:Pr3+,K+螢光光譜 63 4.4-3 SrWO4:Pr3+,Na+螢光光譜 66 4.4-4 SrWO4:Pr3+,Nb5+螢光光譜 69 4.5 固相法製備SrWO4:(Dy3+,M)(M=Na、K、Nb) 74 4.5-1 相分析 74 4.5-2紫外-可見光吸收光譜 75 4.5-3螢光光譜 76 4.4-4電荷補償對螢光強度的影響 81 4.6 Lifetime分析 84 第五章 結論 88 參考文獻 89

    1. Errandonea, D., et al., Effect of pressure on the luminescence properties of Nd3+ doped SrWO4 laser crystal. Journal of Alloys and Compounds, 2008. 451(1-2): p. 212-214.
    2. Ivleva, L.I., et al., SrWO4:Nd3+ - new material for multifunctional lasers. Optical Materials, 2003. 23(1-2): p. 439-442.
    3. Sulc, J., et al., Nd:SrWO4 and Nd:BaWO4 Raman lasers. Optical Materials, 2007. 30(1): p. 195-197.
    4. Jia, G., et al., Optical spectroscopy of Yb3+ doped SrWO4 scheelite crystal. Journal of Alloys and Compounds, 2007. 436(1-2): p. 341-344.
    5. Ju, Z., et al., Red phosphor SrWO4:Eu3+ for potential application in white LED. Optical Materials, 2011. 33(6): p. 909-913.
    6. Ju, Z.-H., et al., A novel orange emissive phosphor SrWO4:Sm3+ for white light-emitting diodes. Journal of Alloys and Compounds, 2010. 507(1): p. 133-136.
    7. Liao, J., et al., Hydrothermal synthesis and photoluminescence of SrWO4:Tb3+ novel green phosphor. Materials Research Bulletin, 2009. 44(9): p. 1863-1866.
    8. Liao, J., et al., Synthesis process and luminescence properties of Tm3+ in AWO4 (A = Ca, Sr, Ba) blue phosphors. Journal of Alloys and Compounds, 2009. 487(1-2): p. 758-762.
    9. Bao, A., et al., Luminescent properties of nanoparticles YPXV1-XO4:Dy phosphors. Journal of Luminescence, 2008. 128(1): p. 60-66.
    10. Fuchs, E.C., et al., Polyspectral white light emission from Eu3+, Tb3+, Dy3+, Tm3+ co-doped GdAl3(BO3)4 phosphors obtained by combustion synthesis. Materials Science and Engineering: B, 2009. 156(1-3): p. 73-78.
    11. Qi, X., et al., Pr3+ doped LaTiNbO6 as a single phosphor for white LEDs. Journal of Alloys and Compounds, 2010. 492(1-2): p. L61-L63.
    12. Boutinaud, P., et al., Red luminescence induced by intervalence charge transfer in Pr3+-doped compounds. Journal of Luminescence,2007. 122-123: p. 430-433.
    13. Boutinaud, P., et al., UV-to-red relaxation pathways in CaTiO3:Pr3+. Journal of Luminescence, 2005. 111(1-2): p. 69-80.
    14. Boutinaud, P., et al., Making red emitting phosphors with Pr3+. Optical Materials, 2006. 28(1-2): p. 9-13.
    15. Chen, J., et al., Synthesis and spectral property of Pr3+-doped tungstate deep red phosphors. Journal of Alloys and Compounds, 2010. 492(1-2): p. 667-670.
    16. Yang, X., et al., The investigation of optical properties by doping halogen in the BaMoO4:Pr3+ phosphor system. Journal of Alloys and Compounds, 2009. 479(1-2): p. 307-309.
    17. Liu, B., et al., White-light long-lasting phosphor Sr2MgSi2O7:Dy3+. Journal of Luminescence, 2007. 122-123: p. 121-124.
    18. 徐敘瑢、蘇勉曾, 發光學與發光材料. 2004, 北京: 化學工業出版社.
    19. Rao C N F R S , G.J., New Directions in Solid State Chemistry. Second Edition ed. 1998: London :Cambridge University Press.
    20. Yang, J.E., The Application and Investigation of Luminescence Materials in Electronic Industry, in Technical Report of ITRI. 1992: Hsinchu, Taiwan.
    21. Shinkichi, T., Luminescence centers of ns2-type ions. 1999, CRC: Boca Raton-Boston-London-New York-Washington.
    22. Ogasawara, K., et al., Optical spectra of trivalent lanthanides in LiYF4 crystal. Journal of Solid State Chemistry, 2005. 178(2): p. 412-418.
    23. Ropp, R.C., Luminescence and the Solid State, Second Edition. 2004, Amsterdam: Elsevier Science.
    24. Kutty, T.R.N., et al., Luminescence of Eu2+ in strontium aluminates prepared by the hydrothermal method. Materials Research Bulletin, 1990. 25(11): p. 1355-1362.
    25. Kingsley, J.J., et al., Combustion synthesis of fine particle rare earth orthoaluminates and yttrium aluminum garnet. Journal of Solid State Chemistry, 1990. 88(2): p. 435-442.
    26. D, C.S.C.N.C.a., Phosphor global summit. 2006: in: Sylvania.
    27. Sczancoski, J.C., et al., Synthesis, growth process and photoluminescence properties of SrWO4 powders. Journal of Colloid and Interface Science, 2009. 330(1): p. 227-236.
    28. Jia, G., et al., Czochralski technique growth of pure and rare-earth-doped SrWO4 crystals. Journal of Crystal Growth, 2004. 273(1-2): p. 220-225.
    29. Kolobanov, V.N., et al., Optical and luminescent properties of anisotropic tungstate crystals. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002. 486(1-2): p. 496-503.

    下載圖示 校內:2016-08-12公開
    校外:2016-08-12公開
    QR CODE