| 研究生: |
李欣穎 Lee, Hsin-Ying |
|---|---|
| 論文名稱: |
氣-液-固機制成長3C-碳化矽薄膜之實驗參數優化研究 The optimization of experimental parameters in the vapor-liquid-solid tri-phase growth of 3C-SiC films |
| 指導教授: |
齊孝定
Qi, Xiaoding 黃肇瑞 Huang, Jow-Lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 碳化矽 、異質磊晶 、氣-液-固機制 |
| 外文關鍵詞: | SiC, VLS, epitaxy, film growth |
| 相關次數: | 點閱:65 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以氣-液-固( VLS )三相成長機制,於矽基板上磊晶成長碳化矽薄膜。VLS 成長機制能夠克服目前最常使用的單一種化學氣相沉積法或物理氣相傳輸技術生長碳化矽薄膜所遇到的一些缺點,利用化學氣相沉積法所使用的原料通常為易燃有毒的氣體,故需要昂貴的設備以防意外發生,而物理氣相傳輸技術則是需要高溫環境,極耗能量且僅可用於高熔點基板。
本研究即是以甲烷為碳源,矽基板為矽源,以金屬銅當作溶劑,利用 VLS成長機制製備碳化矽薄膜,其過程簡述如下:使用蒸鍍系統於矽基板上蒸鍍─層銅薄膜並在高溫下熔融,然後通甲烷氣體( 碳源 )使其擴散通過此液體層與基板( 矽源 )發生反應,導致 β-SiC 於矽基板表面磊晶生長。 VLS 成長過程主要控制參數為:基板溫度、生長時間、Ar/CH4 比、以及銅膜厚度等等。
研究結果證實這些參數改變會影響 β-SiC 的成核及成長速率,當基板溫度過低、碳源過多 (低 Ar/CH4 比)、或銅膜厚度太薄時,所成長的薄膜在 X-ray 繞射中會呈現出非(111)晶面之 β-SiC 繞射峰,顯示因 β-SiC 成核及成長速度過快而使得碳化矽之晶粒排列紊亂,無法維持磊晶品質。實驗發現最佳參數為:基板溫度 1100 ℃、 Ar/CH4 比 3000/1、銅膜厚度 30 nm、持溫 4 小時後隨爐冷卻,在此參數下,不需碳化矽晶種即可於矽基板上生長出磊晶 β-SiC 薄膜。結構分析發現矽基板與 β-SiC 薄膜間有一結構紊亂的界面層存在,厚度約為 1~2 nm,此界面層的存在是為了緩衝矽基板與 β-SiC 薄膜間高達 20% 的晶格差所造成的應力。
3C-SiC films were deposited on the (111) Si substrates by the vapor-liquid-solid (VLS) tri-phase growth method, which involved the following steps: (1) a Cu thin layer was evaporated on the Si substrate prior to the growth, (2) the substrate was heated up to melt the Cu layer, (3) methane gas (carbon source) was diffused into the liquid Cu layer to react with Si, leading to the growth of SiC films on the substrate surface. The control parameters in such a VLS growth process included growth temperature, dwelling time, Ar/CH4 ratio (i.e. carbon concentration in the ambience), and Cu layer thickness (i.e. carbon diffusion rate). These parameters controlled the nucleation process and growth rate and therefore, determined the phase purity and texture of the resultant 3C-SiC films. The optimal parameters were identified as follows: substrate temperature 1100 ℃, dwelling time 4 hour, Ar/CH4 ratio 3000/1, and Cu layer thickness 30 nm. Under such conditions, well crystallized 3C-SiC films with a preferred (111) orientation were grown. It was observed that between the grown 3C-SiC film and (111) Si substrate there was a structurally disordered transition layer of the thickness of about 1~2 nm. Such a layer was helpful to release the heteroepitaxial strain introduced by the large lattice misfit (~25%) between Si and 3C-SiC.
[1] C.-M. Zetterling, Process Technology for SiC Devices, (2002).
[2] A.R. West, Solid State Chemistry and Its Applications, 1987.
[3] P.P.X.J. Ninga, Journal of Materials Research 11 (1996).
[4] R. Stevens, Journal of Materials Science, 7 (1972) 517-521.
[5] P.T.B. Shaffer, Acta Cryst., 25 (1969).
[6] Z. Liu, Growth of Bulk single crystal and its application to SiC, France, 2008.
[7] A.R.P.A.L.B. ROWLAND, IEEE 90 (2002).
[8] H.A.T. Takeuchi, K. Hiramatsu, N. Sawaki, I. Akasaki, Journal of Crystal Growth, 115 (1991) 634-638.
[9] 宋健民, 鑽石底碳化矽:LED的夢幻基材, 工業材料雜誌,246, p.166 (2007).
[10] O. Kim-Hak, G. Ferro, J. Dazord, M. Marinova, J. Lorenzzi, E.Polychroniadis, P. Chaudouët, D. Chaussende, P. Miele, Journal of Crystal Growth, 311 (2009) 2385-2390.
[11] J.R. O’Connor, J. Smiltens, Silicon carbide, a high temperature semiconductor, Symposium Publications Division, Pergamon Press, 1960.
[12] Y.-M. Li, B.F.Fieselmann, A.Catalano, Amorphous and crystalline silicon carbide IV, Springer-Verlag 229 (1992).
[13] 李文鴻, “電子迴旋共振化學氣相沉積碳化矽薄膜之低溫成長的研究”, 國立台灣科技大學化學工程技術研究所博士論文, (1994).
[14] D.S. Hoover, S.Y. Lynn, D. Grag, Solid State Technol., 89 (1991).
[15] W.F. Knippenberg, Philips Res. Rep. (Netherlands), 18, P.161 (1963).
[16] Y.M. Tairov, V.F. Tsvetkov, Journal of Crystal Growth (Netherlands), 52, P.146 (1981).
[17] P.D. Ramesh, B. Vaidhyanathan, M. Ganguli, R.J. Rao, J. Mater. Res., 9, P.3025 (1994).
[18] M. Syvajarvi, R. Yakimova, M. Tuominen, A.Kakanakova-Georgieva, M.F. MacMillan, A. Henry, Q. Wahab, E. Janzen, J. Crystal Growth, 197, P.147 (1999).
[19] V.F. Tsvetkov, S.T. Allen, H.S. Kong, J. C. H. Carter, Inst. Phys. Conf. Ser., 142, P.17 (1997).
[20] D.H. Hofmann, M.H. Muller, Materials Science and Engineering B, 61-62, P.29 (1999).
[21] Y.M. Tairov, Y.A. Vodakov, Topics in Applied Physics 17: Electroluminescence, Springer, Berlin, 31 (1997).
[22] Y.M. Tairov, N.S. Peev, N.A. Smirnova, A.A. Kalnin, Crystal Research and Technology, 21,P.1503 (1986).
[23] F.A. Halden, Proc. Conf. on Silicon Carbide, Boston 1959, Pergamon Press, 115 (1960).
[24] R.I. Scace, G.A. Slack, J. Chem. Phys., 30, P.1551 (1959).
[25] R.N. Hall, Journal of Applied Physics, 29, P.914 (1958).
[26] A. Tanaka, N. Shiozaki, H. Katsuno, Journal of Crystal Growth, 237-239 (2002) 1202-1205.
[27] Z. Shi, W. Zhang, G.F. Zheng, J. Kurianski, M.A. Green, R. Bergmann, Journal of Crystal Growth, 151 (1995) 278-284.
[28] X.M. Xi, X.F. Yang, Journal of MATERIALS RESEARCH, (1995).
[29] L.B. Griffiths, A.I. Mlavsky, J. Electrochem. Soc., 111 (1964) 805-810.
[30] B.M. Epelbaum, Z. Herro, M. Bickermann, A. Winnacker, Materials Science Forum, 457-460 (2004).
[31] G.F.J. Lorenzzi, F. Cauwet, V. Souliere, D. Carole, Journal of Crystal Growth, 318 (2001) 397-400.
[32] C.J.F. Abdoun, G. Ferro, F. Cauwet, Y. Monteil, Materials Science Forum, 457-460 (2004) 245-248.
[33] M.M.P. Capper, Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials, 2007.
[34] R.W.C.K.H.J. Buschow, M.C. Flemings, B.I. (print), E.J. Kramer, S. Mahajan, P. Veyssière, Encyclopedia of Materials: Science and Technology, (2010).
[35] S.I.M.T.S. Sudarshan, Microelectronic Engineering, 83 (2006) 155-159.
[36] M. Komatz, K. Matsuishi, S.K. Hong, T. Yao, phys. stat. sol., 3 (2006) 571-574.
[37] A. A. Burk Jr.,1, M.J. OÕLoughlin, H. D. Nordby Jr., Journal of Crystal Growth, 200 (1999).
[38] Z.Z.M. Beshkova, journal of Materials Science, 14 (2003) 767-768.
[39] W.D.W. Stephen, M. Rossnagel, J.J. Haber, Handbook of Plasma Processing Technology: fundamentals, etching, deposition, and surface interactions, 1990.
[40] J.H.a.M.O.S. Yajima, Chemistry Letters 4(1975) 931-934.
[41] J.p.a.T. Vasiliauskas, Epitaxial growth of thin films, France, 2008.
[42] T.F. Hans, J. Scheel, Crystal growth technology, 2004.
[43] 梁育綾, 利用氣-液-固機制於矽基板上磊晶成長碳化矽薄膜之研究, 國立成功大學材料科學及工程學系碩博士論文, (2012).
[44] R.S. Wagner, W.C. Ellis, Trans. Metall. Soc., AIME, 233, P.1053 (1965) .
[45] M.S.G. Ferro, O. Kim-Hak, F. Cauwet, Y. Monteil, Materials Science Forum, 556-557, P.41 (2007).
[46] M. Soueidan, G. Ferro, Advanced Functional Materials, 16 (2006) 975-979.
[47] A. Tanaka, N. Shiozaki, H. Katsuno, Journal of Crystal Growth, 269, P.413 (2004).
[48] H. Maeda, M. Irie, T. Hino, K. Kusakabe, S. Morooka, Formation of highly oriented diamond film on carburized (100) Si substrate, Journal of materials research, 10 (1995) 158-164.
[49] R. Thomas, M. Francombe, Influence of impurities on the surface structures and fault generation in homoepitaxial Si (111) films, Surface Science, 25 (1971) 357-378.
[50] C.S. Barrett, T. Massalski, Structure of Metals: Crystallographic Methods, Principles and Data, New York: Pergamon, 1980.
[51] T. Chassagne, G. Ferro, D. Chaussende, F. Cauwet, Y. Monteil, J. Bouix, A comprehensive study of SiC growth processes in a VPE reactor, Thin Solid Films, 402 (2002) 83-89.
[52] J. Li, A. Steckl, Nucleation and void formation mechanisms in SiC thin film growth on Si by carbonization, Journal of The Electrochemical Society, 142 (1995) 634-641.
[53] H. Wang, Z. Zhang, L.M. Wong, S. Wang, Z. Wei, G.P. Li, G. Xing, D. Guo, D. Wang, T. Wu, Shape-controlled fabrication of micro/nanoscale triangle, square, wire-like, and hexagon pits on silicon substrates induced by anisotropic diffusion and silicide sublimation, ACS nano, 4 (2010) 2901-2909.
[54] G. Ferro, Y. Monteil, H. Vincent, V. Thevenot, M.D. Tran, F. Cauwet, J. Bouix, Atomic force microscopy growth modeling of SiC buffer layers on Si (100) and quality optimization, Journal of applied physics, 80 (1996) 4691-4702.
[55] K. Takahashi, S. Nishino, J. Saraie, Low‐Temperature Growth of 3 C‐SiC on Si Substrate by Chemical Vapor Deposition Using Hexamethyldisilane as a Source Material, Journal of The Electrochemical Society, 139 (1992) 3565-3571.