| 研究生: |
張乃文 Chang, Nai-Wen |
|---|---|
| 論文名稱: |
反應式濺鍍鉭鈦氮奈米複合薄膜之微結構與電性質研究 A study on the microstructure and electrical properties of Ta-Ti-N nanocomposite thin films by reactive sputtering |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 氮化鉭 、氮化鈦 、鉭-鈦-氮奈米複合薄膜 、電阻溫度係數 、薄膜電阻器 、感測器 |
| 外文關鍵詞: | Ta-N, Ti-N, Ta-Ti-N, TCR, Thin film resistor, sensor |
| 相關次數: | 點閱:207 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用反應式磁控共濺鍍系統製備不同的Ta-N、Ti-N單層奈米薄膜以及更兼具兩者特性的Ta-Ti-N三元複合薄膜,藉由改變氮氣流量與濺鍍靶材功率等製程參數,來討論不同薄膜微結構、形貌、成分對電阻率及電阻溫度係數之影響與關係。在實驗上藉由控制金屬靶功率、材料,並通入不同的氮氣流量比進行薄膜沈積。完成後將其以低掠角X光繞射儀分析其微結構與結晶相;以掃描式電子顯微鏡觀察表面形貌;以能量散佈光譜儀檢測薄膜化學成份;最後將其以四點探針與膜厚量測計算薄膜電阻率,並將四點探針結合加熱平台以測量電阻溫度係數。
實驗結果顯示,此薄膜的基本結構組成為α-Ta和β-Ti,金屬薄膜的厚度會隨製程參數變化,氮氣比例的增加與靶材功率降低會令沉積速率減少。而電阻率與電阻溫度係數會與材料的結構與性質有決定性的因素,大致來說隨著氮氣流量比的上升電阻率會增加。但是Ta-N薄膜在氮氣流量比為20%左右時,由於其微結構處於正在轉換類非晶-奈米晶粒的結構,其表面形貌相對緻密且電阻值較高。為使其得到改善,這邊使用共鍍的方式下結合兩種金屬Ta與Ti,使多晶沉積結構趨向穩定。總體而言,對薄膜性質的主要影響為薄膜成分與結構的改變,而氮氣流量比可做為控制薄膜成分的重要參數,在有穩定的電阻值及較低電阻溫度係數時,預期可應用薄膜電阻領域上。而相對具較高的負電阻溫度係數薄膜則適合應用在溫度感測器的元件上。
關鍵字:氮化鉭、氮化鈦、鉭-鈦-氮奈米複合薄膜、電阻溫度係數、薄膜電阻器、感測器。
Binary transition-metal nitride coatings such as tantalum nitride (Ta-N) and titanium nitride (Ti-N) have been attracted much attention because of its low resistivity, high thermal stability, high hardness, and corrosion resistance. It has a variety of wide applications such as diffusion barrier and resistor in micro and optoelectronics, cutting tools and heat-resistant layer in mechanical industry. The combination of Ta-N and Ti-N is expected to create a range of multi-functional materials in different compositions. Moreover, the combination of Ti in Ta-N thin film with the possibility to adjust the electrical property has been a great benefit to resistors and sensors by some controlled the related sputtering condition. In this present work, a series of transition nitride metal (Ta-N) and alloys (Ta-(Ti)-N) nanocomposite thin films were deposited by DC magnetron sputtering. The microstructure, composition, morphology and electrical properties of Ta-Ti-N films were characterized by using X-ray diffraction and Energy dispersive spectroscopy. The microstructures of the Ti-Ta alloys are based on bcc α-Ta and bcc β-Ti. In addition, the Ta-N structure showed clearly the qusi-amorphous structure with N2 flow ratio of 20%. However, the Ta-Ti-N is preferred to form polycrystalline phase at high nitrogen flow rates up to 20%. The results showed that Ta-Ti-N film at high FN2% possessed a high resistivity and high negative coefficient of resistance (N-TCR), which may be recognized as the best properties for application in thermally based micro sensors. Ta-Ti films which can precisely control the electrical property may be suitable for thin-film resistor.
參考文獻
1. S. PalDey and S. C. Deevi, “Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review,” Materials Science and Engineering A, vol. 342, no. 1-2, pp. 58-79, Feb. 2003.
2. C. C. Chang, J. S. Jeng, and J. S. Chen, “Microstructural and electrical characteristics of reactively sputtered Ta-N thin films,” Thin Solid Films, vol. 413, no. 1-2, pp. 46-51, Jun. 2002.
3. K. H. Min, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 14, no. 5, p. 3263, Sep. 1996.
4. C. K. Chung, Y. L. Chang, J. C. Wu, J. J. Jhu, and T. S. Chen, “Characterization and patterning of novel high-TCR Ta-Si-N thin films for sensor application,” Sensors and Actuators A: Physical, vol. 156, no. 2, pp. 323-327, Dec. 2009.
5. Y. L. Su and W. H. Kao, “Optimum multilayer TiN-TiCN coatings for wear resistance and actual application,” Wear, vol. 223, no. 1-2, pp. 119-130, Dec. 1998.
6. I. Dahan, U. Admon, N. Frage, J. Sariel, and M. P. Dariel, “Diffusion in Ti/TiC multilayer coatings,” Thin Solid Films, vol. 377-378, pp. 687-693, Dec. 2000.
7. D. H. Kuo and W. C. Liao, “Ti-N, Ti-C-N, Ti-Si-N coatings obtained by APCVD at 650-800 °C,” Applied Surface Science, vol. 199, no. 1-4, pp. 278-286, Oct. 2002.
8. A. A. Adjaottor, E. I. Meletis, S. Logothetidis, I. Alexandrou, and S. Kokkou, “Effect of substrate bias on sputter-deposited TiCx, TiNy and TiCxNy thin films,” Surface and Coatings Technology, vol. 76-77, no. 1, pp. 142-148, Nov. 1995.
9. C. W. Zou, J. Zhang, W. Xie, L. X. Shao, and D. J. Fu, “Structure and mechanical properties of Ti-Al-N coatings deposited by combined cathodic arc middle frequency magnetron sputtering,” Journal of Alloys and Compounds, vol. 509, no. 5, pp. 1989-1993, Feb. 2011.
10. R. Wuhrer, W. Y. Yeung, M. R. Phillips, and G. McCredie, “Study on d.c. magnetron sputter deposition of titanium aluminium nitride thin films: effect of aluminium content on coating,” Thin Solid Films, vol. 290-291, pp. 339-342, Dec. 1996.
11. L. Chen, K. K. Chang, Y. Du, J. R. Li, and M. J. Wu, “A comparative research on magnetron sputtering and arc evaporation deposition of Ti-Al-N coatings,” Thin Solid Films, vol. 519, no. 11, pp. 3762-3767, Mar. 2011.
12. L. Chen, M. Moser, Y. Du, and P. H. Mayrhofer, “Compositional and structural evolution of sputtered Ti-Al-N,” Thin Solid Films, vol. 517, no. 24, pp. 6635-6641, Oct. 2009.
13. Y. Teng, S. Zhu, F. Zhang, M. Li, F. Wang, and W. Wu, “Electronic structure, lattice constant, optical and mechanical properties for NaCl-structured Ti-Al-N by density functional theory,” Physica B: Condensed Matter, vol. 358, no. 1-4, pp. 77-85, Apr. 2005.
14. C. K. Chung and T. S. Chen, “Effect of microstructures on the electrical and optoelectronic properties of nanocrystalline Ta-Si-N thin films by reactive magnetron cosputtering,” Scripta Materialia, vol. 57, no. 7, pp. 611-614, Oct. 2007.
15. C. K. Chung, T. S. Chen, C. C. Peng, and B. H. Wu, “Thermal stability of Ta-Si-N nanocomposite thin films at different nitrogen flow ratios,” Surface and Coatings Technology, vol. 201, no. 7, pp. 3947-3952, Dec. 2006.
16. C. K. Chung and P. J. Su, “Material characterization and nanohardness measurement of nanostructured Ta-Si-N film,” Surface and Coatings Technology, vol. 188-189, pp. 420-424, November. 2004.
17. C. K. Chung, T. S. Chen, N. W. Chang, S. C. Chang, and M. W. Liao, “Oxidation resistance and mechanical property of cosputtered quasi-amorphous Ta-Si-N films under vacuum rapid thermal annealing,” Surface and Coatings Technology, vol. 205, no. 5, pp. 1268-1272, Nov. 2010.
18. C. Linder, A. Dommann, G. Staufert, and M. A. Nicolet, “Ternary TaSiN films for sensors and actuators,” Sensors and Actuators A: Physical, vol. 61, no. 1-3, pp. 387-391, Jun. 1997.
19. S. M. Na, I.S. Park, S. Y. Park, G. H. Jeong and S. J. Suh, “Electrical and structural properties of Ta-N thin film and Ta/Ta-N multilayer for embedded resistor,” Thin Solid Films, vol. 516, no. 16, pp. 5465-5469, Jun. 2008.
20. S. M. Kang, S. G. Yoon, S. J. Suh, and D. H. Yoon, “Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors,” Thin Solid Films, vol. 516, no. 11, pp. 3568-3571, Apr. 2008.
21. C. K. Chung, A. Nautiyal, T. S. Chen, and Y. L. Chang, “Grain boundary scattering for temperature coefficient of resistance (TCR) behaviour of Ta–Si–N thin films,” Journal of Physics D: Applied Physics, vol. 41, no. 18, p. 185404, Sep. 2008.
22. R. A. Araujo, J. Yoon, X. Zhang, and H. Wang, “Cubic TaN diffusion barrier for Cu interconnects using an ultra-thin TiN seed layer,” Thin Solid Films, vol. 516, no. 15, pp. 5103-5106, Jun. 2008.
23. 莊達人, VLSI製造技術, 高立圖書. 2002.
24. A. Javed and J. B. Sun, “An investigation of structural phase transformation and electrical resistivity in Ta films,” Applied Surface Science, vol. 257, no. 4, pp. 1211-1215, Dec. 2010.
25. J. W. Bae, J. W. Lim, K. Mimura, and M. Isshiki, “Ion beam deposition of [alpha]-Ta films by nitrogen addition and improvement of diffusion barrier property,” Thin Solid Films, vol. 515, no. 11, pp. 4768-4773, Apr. 2007.
26. Z. L. Yuan, D. H. Zhang, C. Y. Li, K. Prasad, and C. M. Tan, “Thermal stability of Cu/[alpha]-Ta/SiO2/Si structures,” Thin Solid Films, vol. 462-463, pp. 284-287, Sep. 2004.
27. J. K. Chen, C. H. Chan, S. W. Kuo, and F. C. Chang, “TaNx thin films as copper barriers sputter-deposited at various NH3-to-Ar flow ratios,” Microelectronic Engineering, vol. 86, no. 3, pp. 414-420, Mar. 2009.
28. J. Kim and S. Jo, “TaN underlayers for spin valves deposited directly on top of Si substrates,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 16, pp. 2116-2120, Aug. 2008.
29. Q. Xie, “Superior thermal stability of Ta/TaN bi-layer structure for copper metallization,” Applied Surface Science, vol. 253, no. 3, pp. 1666-1672, Nov. 2006.
30. J. H. Hsieh, M. K. Cheng, C. Li, S. H. Chen, and Y. G. Chang, “Study of Cu emergence on the surface of TaN-Cu nanocomposite thin films and its effects on tribological property,” Thin Solid Films, vol. 516, no. 16, pp. 5430-5434, Jun. 2008.
31. R. Hübner, “Structure and thermal stability of graded Ta-TaN diffusion barriers between Cu and SiO2,” Thin Solid Films, vol. 437, no. 1-2, pp. 248-256, Aug. 2003.
32. G. S. Chen, P. Y. Lee, and S. T. Chen, “Phase formation behavior and diffusion barrier property of reactively sputtered tantalum-based thin films used in semiconductor metallization,” Thin Solid Films, vol. 353, no. 1-2, pp. 264-273, Sep. 1999.
33. M. Hecker., “Influence of N content on microstructure and thermal stability of Ta-N thin films for Cu interconnection,” Thin Solid Films, vol. 414, no. 2, pp. 184-191, Jul. 2002.
34. W. H. Lee, J. C. Lin, and C. Lee, “Characterization of tantalum nitride films deposited by reactive sputtering of Ta in N2/Ar gas mixtures,” Materials Chemistry and Physics, vol. 68, no. 1-3, pp. 266-271, Feb. 2001.
35. G. S. Chen, S. T. Chen, S. C. Huang, and H. Y. Lee, “Growth mechanism of sputter deposited Ta and Ta-N thin films induced by an underlying titanium layer and varying nitrogen flow rates,” Applied Surface Science, vol. 169-170, pp. 353-357, Jan. 2001.
36. A. Z. Moshfegh and O. Akhavan, “Bias sputtered Ta modified diffusion barrier in Cu/Ta(Vb)/Si(111) structures,” Thin Solid Films, vol. 370, no. 1-2, pp. 10-17, Jul. 2000.
37. J. P. Jacquemin, “TaN/Ta bilayer barrier characteristics and integration for 90 and 65 nm nodes,” Microelectronic Engineering, vol. 82, no. 3-4, pp. 613-617, Dec. 2005.
38. J. C. Tsao, C. P. Liu, Y. L. Wang, Y. S. Wang, and K. W. Chen, “Controlling Ta phase in Ta/TaN bilayer by surface pre-treatment on TaN,” Journal of Physics and Chemistry of Solids, vol. 69, no. 2-3, pp. 501-504, Feb. 2007.
39. J. An and Q. Y. Zhang, “Structure, morphology and nanoindentation behavior of multilayered TiN/TaN coatings,” Surface and Coatings Technology, vol. 200, no. 7, pp. 2451-2458, Dec. 2005.
40. J. An and Q. Y. Zhang, “Structure, hardness and tribological properties of nanolayered TiN/TaN multilayer coatings,” Materials Characterization, vol. 58, no. 5, pp. 439-446, May. 2007.
41. T. I. Selinder, M. E. Sjöstrand, M. Nordin, M. Larsson, Å. Östlund, and S. Hogmark, “Performance of PVD TiN/TaN and TiN/NbN superlattice coated cemented carbide tools in stainless steel machining,” Surface and Coatings Technology, vol. 105, no. 1-2, pp. 51-55, Jun. 1998.
42. J. Perez-Mariano, K.-H. Lau, A. Sanjurjo, J. Caro, J. M. Prado, and C. Colominas, “Multilayer coatings by chemical vapor deposition in a fluidized bed reactor at atmospheric pressure (AP/FBR-CVD): TiN/TaN and TiN/W,” Surface and Coatings Technology, vol. 201, no. 6, pp. 2174-2180, Dec. 2006.
43. Y. Kang, C. Lee, and J. Lee, “Effects of processing variables on the mechanical properties of Ta/TaN multilayer coatings,” Materials Science and Engineering B, vol. 75, no. 1, pp. 17-23, May. 2000.
44. H. C. Kim, N. D. Theodore, K. S. Gadre, J. W. Mayer, and T. L. Alford, “Investigation of thermal stability, phase formation, electrical, and microstructural properties of sputter-deposited titanium aluminide thin films,” Thin Solid Films, vol. 460, no. 1-2, pp. 17-24, Jul. 2004.
45. C. Kaufmann, J. Baumann, T. Gessner, T. Raschke, M. Rennau, and N. Zichner, “Electrical characterization of reactively sputtered TiN diffusion barrier layers for copper metallization,” Applied Surface Science, vol. 91, no. 1-4, pp. 291-294, Oct. 1995.
46. K. Deenamma Vargheese, G. Mohan Rao, T. V. Balasubramanian, and S. Kumar, “Preparation and characterization of TiN films by electron cyclotron resonance (ECR) sputtering for diffusion barrier applications,” Materials Science and Engineering B, vol. 83, no. 1-3, pp. 242-248, Jun. 2001.
47. F. Mei, N. Shao, L. Wei, and G. Li, “Effect of N2 partial pressure on the microstructure and mechanical properties of reactively sputtered (Ti,Al)N coatings,” Materials Letters, vol. 59, no. 17, pp. 2210-2213, Jul. 2005.
48. L. Xiao., “Nanostructured TiN coating prepared by reactive plasma spraying in atmosphere,” Applied Surface Science, vol. 253, no. 18, pp. 7535-7539, Jul. 2007.
49. V. Chawla, R. Jayaganthan, and R. Chandra, “Structural characterizations of magnetron sputtered nanocrystalline TiN thin films,” Materials Characterization, vol. 59, no. 8, pp. 1015-1020, Aug. 2008.
50. A. Azushima, Y. Tanno, H. Iwata, and K. Aoki, “Coefficients of friction of TiN coatings with preferred grain orientations under dry condition,” Wear, vol. 265, no. 7-8, pp. 1017-1022, Sep. 2008.
51. K. Singh, P. K. Limaye, N. L. Soni, A. K. Grover, R. G. Agrawal, and A. K. Suri, “Wear studies of (Ti-Al)N coatings deposited by reactive magnetron sputtering,” Wear, vol. 258, no. 11-12, pp. 1813-1824, Jun. 2005.
52. L. Zhang, C. Xie, and J. Wu, “Effect of annealing temperature on surface morphology and mechanical properties of sputter-deposited Ti-Ni thin films,” Journal of Alloys and Compounds, vol. 427, no. 1-2, pp. 238-243, Jan. 2007.
53. L. Hultman., “Transmission electron microscopy studies of microstructural evolution, defect structure, and phase transitions in polycrystalline and epitaxial Ti1-xAlxN and TiN films grown by reactive magnetron sputter deposition,” Thin Solid Films, vol. 205, no. 2, pp. 153-164, Dec. 1991.
54. V. Chawla, R. Jayaganthan, and R. Chandra, “A study of structural and mechanical properties of sputter deposited nanocomposite Ti-Si-N thin films,” Surface and Coatings Technology, vol. 204, no. 9-10, pp. 1582-1589, Jan. 2010.
55. C. K. Chung and T. S. Chen, “Effect of Si/Ta and nitrogen ratios on the thermal stability of Ta-Si-N thin films,” Microelectronic Engineering, vol. 87, no. 2, pp. 129-134, Feb. 2010.
56. A. Rahmati, “Reactive DC magnetron sputter deposited Ti-Cu-N nano-composite thin films at nitrogen ambient,” Vacuum, vol. 85, no. 9, pp. 853-860, Feb. 2011.
57. M. A. Nicolet and P. H. Giauque, “Highly metastable amorphous or near-amorphous ternary films (mictamict alloys),” Microelectronic Engineering, vol. 55, no. 1-4, pp. 357-367, Mar. 2001.
58. C. K. Chung, T. S. Chen, A. Nautiyal, N. W. Chang, and S. T. Hung, “Effect of the target shuttering on the characteristics of the Ta-Si-N thin films by reactive magnetron co-sputtering,” Surface and Coatings Technology, vol. 204, no. 6-7, pp. 1071-1075, Dec. 2009.
59. Y. L. Zhou and M. Niinomi, “Ti-25Ta alloy with the best mechanical compatibility in Ti-Ta alloys for biomedical applications,” Materials Science and Engineering: C, vol. 29, no. 3, pp. 1061-1065, Apr. 2009.
60. Y. L. Zhou, M. Niinomi, and T. Akahori, “Effects of Ta content on Young’s modulus and tensile properties of binary Ti-Ta alloys for biomedical applications,” Materials Science and Engineering A, vol. 371, no. 1-2, pp. 283-290, Apr. 2004.
61. Y. L. Zhou, M. Niinomi, T. Akahori, H. Fukui, and H. Toda, “Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications,” Materials Science and Engineering A, vol. 398, no. 1-2, pp. 28-36, May. 2005.
62. Y. L. Zhou, M. Niinomi, and T. Akahori, “Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf,” Materials Science and Engineering: A, vol. 483-484, pp. 153-156, Jun. 2008.
63. D. Mareci, R. Chelariu, D. M. Gordin, G. Ungureanu, and T. Gloriant, “Comparative corrosion study of Ti-Ta alloys for dental applications,” Acta Biomaterialia, vol. 5, no. 9, pp. 3625-3639, Nov. 2009.
64. B.-H. Moon, H. C. Choe, and W. A. Brantley, “Surface characteristics of TiN/ZrN coated nanotubular structure on the Ti-35Ta-xHf alloy for bio-implant applications,” Applied Surface Science, vol. In Press, Corrected Proof, 2011.
65. Z. Wei., “Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism,” in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp. 1-4, 2008.
66. C. Y. Lin, D Y. Lee, S. Y. Wang, C. C. Lin, and T. Y. Tseng, “Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices,” Surface and Coatings Technology, vol. 203, no. 5-7, pp. 628-631, Dec. 2008.
67. W. G. Kim and S. W. Rhee, “Effect of post annealing on the resistive switching of TiO2 thin film,” Microelectronic Engineering, vol. 86, no. 11, pp. 2153-2156, Nov. 2009.
68. L. M. Chen, T Y. Lin, C. C. Chang, S. C. Chang, and T. S. Chin, “Electrode effect on resistive switching of Ti-added amorphous SiOx films,” Thin Solid Films, vol. 518, no. 24, pp. 7352-7355, Oct. 2010.
69. R. Sanjinés, M. Benkahoul, C. S. Sandu, P. E. Schmid, and F. Lévy, “Relationship between the physical and structural properties of Nb[sub z]Si[sub y]N[sub x] thin films deposited by dc reactive magnetron sputtering,” Journal of Applied Physics, vol. 98, no. 12, p. 123511, 2005.
70. T. S. Yeh, J. M. Wu, and L. J. Hu, “The properties of TiN thin films deposited by pulsed direct current magnetron sputtering,” Thin Solid Films, vol. 516, no. 21, pp. 7294-7298, Sep. 2008.
71. L. Gladczuk, A. Patel, J. D. Demaree, and M. Sosnowski, “Sputter deposition of bcc tantalum films with TaN underlayers for protection of steel,” Thin Solid Films, vol. 476, no. 2, pp. 295-302, Apr. 2005.
72. R. Hübner., “Influence of nitrogen content on the crystallization behavior of thin Ta-Si-N diffusion barriers,” Thin Solid Films, vol. 468, no. 1-2, pp. 183-192, Dec. 2004.