研究生: |
單開民 Shan, Kai-Min |
---|---|
論文名稱: |
在小樣本情境下增強生成對抗網路之判別網路的訓練效果 Improve the training effectiveness of the discriminating network of the generated adversarial network in the context of small samples |
指導教授: |
利德江
Li, Der-Chiang |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 小樣本 、虛擬樣本產生 、生成對抗網路 |
外文關鍵詞: | small data set, virtual sample generation, Generative Adversarial Network |
相關次數: | 點閱:141 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Anthony, M., & Biggs, N. (1993). Computational learning theory for artificial neural networks. In North-Holland Mathematical Library (Vol. 51, pp. 25-62): Elsevier.
Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan. arXiv preprint arXiv:1701.07875.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
Chongfu, H. (1997). Principle of information diffusion. Fuzzy sets and Systems, 91(1), 69-90.
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27.
Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap: CRC press.
Fiore, U., De Santis, A., Perla, F., Zanetti, P., & Palmieri, F. (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479, 448-455.
Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., & Greenspan, H. (2018). GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing, 321, 321-331.
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems (NIPS), 2014-December, 2672–2680.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A. C. (2017). Improved training of wasserstein gans. Paper presented at the Advances in neural information processing systems.
Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., . . . He, K. (2017). Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.
Huang, C., & Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35(2), 137-161.
Jang, J.-S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), 665-685.
Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, 4396-4405.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.
Li, D. C., Liu, C. W., & Hu, S. C. (2010). A learning method for the class imbalance problem with medical data sets. Comput Biol Med, 40(5), 509-518.
Li, D. C., Tsai, T. I., & Shi, S. (2008). A prediction of the dielectric constant of multi-layer ceramic capacitors using the mega-trend-diffusion technique in powder pilot runs: case study. International Journal of Production Research, 47(1), 51-69.
Li, D.-C., Chen, C.-C., Chang, C.-J., & Chen, W.-C. (2012). Employing box-and-whisker plots for learning more knowledge in TFT-LCD pilot runs. International Journal of Production Research, 50(6), 1539-1553.
Li, D.-C., Chen, C.-C., Chen, W.-C., & Chang, C.-J. (2012a). Employing dependent virtual samples to obtain more manufacturing information in pilot runs. International Journal of Production Research, 50(23), 6886-6903.
Li, D.-C., Chen, L.-S., & Lin, Y.-S. (2010). Using Functional Virtual Population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41(17), 4011-4024.
Li, D.-C., Hsu, H.-C., Tsai, T.-I., Lu, T.-J., & Hu, S. C. (2007). A new method to help diagnose cancers for small sample size. Expert Systems with Applications, 33(2), 420-424.
Li, D.-C., Huang, W.-T., Chen, C.-C., & Chang, C.-J. (2013). Employing virtual samples to build early high-dimensional manufacturing models. International Journal of Production Research, 51(11), 3206-3224.
Li, D.-C., & Lin, Y.-S. (2006). Using virtual sample generation to build up management knowledge in the early manufacturing stages. European Journal of Operational Research, 175(1), 413-434.
Li, D.-C., Wu, C., & Chang, F. M. (2005). Using data-fuzzification technology in small data set learning to improve FMS scheduling accuracy. The International Journal of Advanced Manufacturing Technology, 27(3-4), 321-328.
Li, D.-C., Wu, C.-S., Tsai, T.-I., & Lina, Y.-S. (2007a). Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge. Computers & Operations Research, 34(4), 966-982.
Liu, Y., Zhou, Y., Liu, X., Dong, F., Wang, C., & Wang, Z. (2019). Wasserstein GAN-Based Small-Sample Augmentation for New-Generation Artificial Intelligence: A Case Study of Cancer-Staging Data in Biology. Engineering, 5(1), 156-163.
Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
Niyogi, P., Girosi, F., & Poggio, T. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceedings of the IEEE, 86(11), 2196-2209.
Papari, M. M., Yousefi, F., Moghadasi, J., Karimi, H., & Campo, A. (2011). Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks. International Journal of Thermal Sciences, 50(1), 44-52.
Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016). Breast cancer histopathological image classification using convolutional neural networks. Paper presented at the 2016 international joint conference on neural networks (IJCNN).
Tian, C., Li, C., Zhang, G., & Lv, Y. (2019). Data Driven Parallel Prediction of Building Energy Consumption Using Generative Adversarial Nets. Energy and Buildings, 186, 230-243.
Tsai, T.-I., & Li, D.-C. (2008). Approximate modeling for high order non-linear functions using small sample sets. Expert Systems with Applications, 34(1), 564-569.
Wang, Q., Zhou, X., Wang, C., Liu, Z., Huang, J., Zhou, Y., . . . Cheng, J.-Z. (2019). WGAN-Based Synthetic Minority Over-Sampling Technique: Improving Semantic Fine-Grained Classification for Lung Nodules in CT Images. IEEE Access, 7, 18450-18463.
Wang, W., Wang, C., Cui, T., & Li, Y. (2020). Study of Restrained Network Structures for Wasserstein Generative Adversarial Networks (WGANs) on Numeric Data Augmentation. IEEE Access, 8, 89812-89821.
Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into imaging, 9(4), 611-629.
Yang, Q., Yan, P., Zhang, Y., Yu, H., Shi, Y., Mou, X., . . . Wang, G. (2018). Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss. IEEE Transactions on Medical Imaging, 37(6), 1348-1357.
Zhu, J., Zhang, J., Qiu, B., Liu, Y., Liu, X., & Chen, L. (2019). Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Acta Oncol, 58(2), 257-264.