簡易檢索 / 詳目顯示

研究生: 尤凱萌
Balon, Eunicamyl
論文名稱: 掃描式熱探針微影銀奈米粒子圖形及其形態分佈
Morphology of Silver Nanoparticles Synthesized and Patterned by Scanning Thermal Lithography
指導教授: 郭昌恕
Kuo, Changshu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 77
中文關鍵詞: 掃描式熱微影銀奈米粒子表面電漿共振表面形貌電漿
外文關鍵詞: scanning thermal lithography, silver nanoparticles, surface plasmon resonance, morphology, plasma etching
相關次數: 點閱:176下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由掃描式探針顯微鏡(SPM)觀察PET/AgNP薄膜的表面形貌可以探討利用掃描式熱微影系統所合成的銀奈米粒子和其分布狀況。高穿透度的PET薄膜內添加不同濃度的三氟醋酸銀(銀前驅物),此薄膜分別經過整體等溫加熱以及局部加熱的熱微影兩種方式還原出奈米銀粒子,並將所得的PET/AgNP薄膜施加不同時間的電漿處理。PET/AgNP的薄膜可以利用暗場顯微鏡的散射光譜和紫外,可見光分析儀的吸收光譜證明奈米銀粒子的存在,利用原子力顯微鏡(AFM)的Tapping模式可以觀察其表面形貌。表面電漿子共振的觀察可透過改變氬電漿處理的方式下PET/AgNP薄膜所得的吸收光譜來探討。由於電漿的轟擊,PET/AgNP薄膜的表面形貌會隨著電漿處理時間的增長有明顯的變化,透過表面形貌的呈現我們觀察到高濃度的銀前驅物將導致高密度的銀粒子還原。這項研究將大量還原和局部還原的銀奈米粒子嵌入在高分子薄膜內然後透過其光學性質和掃描式探針顯微鏡所得的表面形貌來展現電漿轟擊處理的效果。

    To investigate the distribution of silver nanoparticles (AgNPs) synthesized by scanning thermal lithography (SThL), the morphology of PET/AgNP film was observed through scanning probe microscopy (SPM). Optically-transparent poly(ethylene terephthalate) or PET was preloaded with various loadings of silver precursor, silver trifluoroacetate (CF3COOAg). The films were isothermally heated and SThL-fabricated for bulk and localized fabrication of AgNPs, respectively. Obtained PET/AgNP films were subjected to plasma treatment of different durations. The presence of AgNPs were confirmed by obtaining the scattering and absorption spectra of the PET/AgNP films using UV-visible spectroscopy and dark-field optical microscopy (DFOM). Morphologies of PET/AgNP films were characterized by scanning probe microscopy through AFM tapping mode. Surface plasmon resonance (SPR) characteristics were altered by argon plasma treatment as investigated by the absorption spectra of the PET/AgNP films plasma-treated at different durations. The morphologies of the PET/AgNP films changed significantly with increasing plasma treatment duration due to etching. Higher silver precursor loading led to denser particles, as presented on the morphologies. This work demonstrated the effect of plasma etching treatment on the SPM-obtained morphologies and optical properties of both bulk and localized-fabricated AgNPs embedded on polymer film.

    中文摘要 I Abstract II Acknowledgement III Table of Contents IV List of Tables VII List of Illustrations VIII Chapter 1: Introduction 1 1.1 Introduction to Plasmonics 1 1.1.1 Surface Plasmons 2 1.1.2 Localized surface plasmon resonance (LSPR) 3 1.1.3 Factors Affecting Localized Surface Plasmon Resonance (LSPR) 6 1.1.4 Plasmon Coupling in Metal Nanoparticles Assembly 7 1.2. Applications of Metal Nanoparticles 8 1.2.1 Nanoimaging and Nanospectroscopy 8 1.2.2 Plasmonic Waveguide 9 1.3 Fabrication of metal nanoparticles 9 1.3.1 Parallel replication 10 1.3.2 Serial Writing 12 1.4 Introduction to Plasma Treatment 16 1.4.1 Argon Plasma Treatment 17 1.4.2 Air Plasma Treatment 17 1.5 Scanning Probe Microscopy (SPM) 18 1.5.1 Scanning Tunneling Microscopy (STM) 19 1.5.2 Atomic Force Microscopy (AFM) 20 1.5.3 Scanning Thermal Microscopy 21 1.6 Introduction to in-situ thermal analysis and the thermal probe 23 1.6.1 Micro-scale thermal probe: Wollaston wire probe 23 1.6.2 Nano-scale thermal probe: nano-TATM probe 23 1.6.3 Fundamentals of in-situ thermal analysis 25 1.6.4 Theory of scanning thermal microscopy 29 30 1.7 Single-step energetic assisted scanning thermal lithography 30 1.8 Real-time LSPR measurement of silver nanoparticles 32 Chapter 2: Motivation and Objective of Research 35 Chapter 3: Experiment 36 3.1 Materials and Instruments 36 3.1.1 Materials 36 3.1.2 Instruments 36 3.2 Experimental Process 38 3.2.1 PET/Silver precursor film preparation 39 3.2.2 Bulk and localized heating of PET/CF3COOAg films 40 3.2.3 Plasma etching treatment 41 3.3 Silver Nanoparticles Analysis 41 3.3.1 Scattering and absorption spectra measurement 41 3.3.2 Scanning Probe Microscopy 43 Chapter 4: Results and Discussion 44 4.1 Investigation of spin-coated PET/CF3COOAg films 44 4.1.1 In-situ thermal analysis of PET/CF3COOAg films 44 4.2. Investigation of bulk-heated PET/CF3COOAg films 46 4.2.1 Optical properties of bulk-heated (furnace) PET/CF3COOAg films 46 4.2.2 Investigation of surface morphologies of bulk-heated PET/AgNP films via SPM 55 4.3 Investigation of localized-heated PET/CF3COOAg films 59 4.3.1 Optical properties of SThL-fabricated PET/CF3COOAg films 59 4.3.2 Investigation of surface morphologies of SThL-fabricated PET/AgNP films via SPM 61 69 4.3.3 Z-profile analysis of SThL-fabricated PET/AgNP films via SPM 70 Chapter 5: Conclusion 72 Chapter 6: Reference 73

    1. Margapoti, E. in Analytica Chimica Acta 1–13 (2012). Online Article
    2. Mie, G. Articles on the Optical Characteristics of Turbid Tubes, Especially Colloidal Metal Solutions. Ann. Phys.-Berlin 25, 377–445 (1908).
    3. Ritchie, R. H. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev 106, 874–881 (1957).
    4. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys 57, 783–826 (1985).
    5. Hutter, E. & Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004).
    6. Sadiq, D. et al. Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. Nano Lett. 11, 1609–1613 (2011).
    7. Kawata, S. Plasmonics for nanoimaging and nanospectroscopy. Appl. Spectrosc. 67, 117–125 (2013).
    8. Brolo, A. Plasmonics for future biosensors. Nat. Photonics 6, 709–713 (2012).
    9. Boardman, A. D. & Zayats, A. V. Nonlinear plasmonics. Handb. Surf. Sci. 4, 329–347 (2014).
    10. Maier, S. a. Plasmonics: The promise of highly integrated optical devices. 12, 1671–1677 (2006).
    11. Rycenga, M., Cobley, C. M., Zeng, J., Li, W. & Moran, C. H. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 111, 3669–3712 (2012).
    12. Lal, S., Link, S. & Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641–648 (2007).
    13. Sanders, A. W. et al. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett. 6, 1822–1826 (2006).
    14. Lin, Y.-C. Real-Time Surface Plasmon Resonance Measurement of Silver Nanoparticles Synthesized by Scanning Thermal Lithography. Thesis. (National Cheng Kung University, 2014).
    15. Craig F. Bohren, D. R. H. Absorption and Scattering of Light by Small Particles. (Wiley, 1998).
    16. Hulst, V. D. Light Scattering by Small Particles. (Courier Dover Publications, 1981).
    17. K. Lance Kelly, Eduardo Coronado, Lin Lin Zhao, and G. C. S. D. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. 668 J. Phys. Chem. B 107, 668–677 (2003).
    18. Zhang, Q. et al. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30 - 200 nm and Comparison of Their Optical Properties. J. Am. Chem. Soc. 132, 11372–11378 (2010).
    19. Mock, J. J., Barbic, M., Smith, D. R., Schultz, D. A. & Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755–6759 (2002).
    20. Malinsky, M. D., Kelly, K. L., Schatz, G. C. & Van Duyne, R. P. Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J. Phys. Chem. B 105, 2343–2350 (2001).
    21. Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2, 107–118 (2007).
    22. Sheikholeslami, S., Jun, Y. W., Jain, P. K. & Alivisatos, A. P. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett. 10, 2655–2660 (2010).
    23. Jain, P. K., Huang, W. & El-sayed, M. a. On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs : A Plasmon Ruler Equation On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs : A Plasmon Ruler Eq. Nano Lett. 7, 2080–2088 (2007).
    24. Jain, P. K. & El-Sayed, M. A. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 487, 153–164 (2010).
    25. Maier, S. a et al. Plasmonics—A Route to Nanoscale Optical Devices (Advanced Materials, 2001, 13, 1501). Adv. Mater. 15, 562 (2003).
    26. Srituravanich, W., Fang, N., Sun, C., Luo, Q. & Zhang, X. Plasmonic nanolithography. Nano Lett. 4, 1085–1088 (2004).
    27. Chou, S., Krauss, P. & Renstrom, P. Imprint of sub-25nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114 (1995).
    28. Costner, E. A., Lin, M. W., Jen, W.-L. & Willson, C. G. Nanoimprint lithography materials development for semiconductor device fabrication. Annu. Rev. Mater. Res. 39, 155–180 (2009).
    29. Jeong, Y.-S. et al. Application of Thermal Initiator for Characteristic Improvements of Polymeric Replica Mold for UV Nanoimprint Lithography. J. Nanosci. Nanotechnol. 14, 5932–5936 (2014).
    30. Fischer, U. C. Submicroscopic pattern replication with visible light. J. Vac. Sci. Technol. 19, 881 (1981).
    31. Dunsmuir, H. W. D. and J. H. Natural lithography. Appl. Phys. Lett. 41, 377–379 (1982).
    32. De Angelis, F. et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 682–687 (2011).
    33. Huang, C.-M. Low-Temperature Scanning Thermal Lithography for Silver Nanoparticle Synthesis and Patterning. Thesis. (National Cheng Kung University, 2010).
    34. Piner, R. D.; Zhu, J.; Xu, F.; Hong, S. H.; Mirkin, C. A. ‘Dip-pen’ Nanolithography.pdf. Nanolithography. Sci. 283, 661–663 (1999).
    35. Salaita, K.; Wang, Y.; Mirkin, C. A. Applications of Dip-Pen Nanolithography. Nat Nano 2, 145–155 (2007).
    36. Dagata, J. A.; Schneir, J.; Harary, H. H.; Evans, C. J.; Postek, M. T.; Bennett, J. Modification of Hydrogen-Passivated Silicon by a Scanning Tunneling Microscope Operating in Air. Appl. Phys. Lett. 56, 2001–2003. (1990).
    37. Sang Jung Ahn, Yun Kyeong Jang, Haeseong Lee, H. L. Mechanism of atomic force micrsoscopy anodization lithography on a mixed Langmuir-Blodgette resist of palmitic cid and hexadecyamine on silicon. Appl. Phys. Lett. 80, 2592–2594 (2002).
    38. Hsu, J. H., Lin, C. Y. & Lin, H. N. Fabrication of metallic nanostructures by atomic force microscopy nanomachining and lift-off process. J. Vac. Sci. Technol. B 22, 2768–2771 (2004).
    39. Chen, Y.-J., Hsu, J.-H. & Lin, H.-N. Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process. Nanotechnology 16, 1112–1115 (2005).
    40. Bae, J. H., Ono, T. & Esashi, M. Scanning probe with an integrated diamond heater element for nanolithography. Appl. Phys. Lett. 82, 814–816 (2003).
    41. King, W. P., Saxena, S., Nelson, B. A., Weeks, B. L. & Pitchimani, R. Nanoscale thermal analysis of an energetic material. Nano Lett. 6, 2145–2149 (2006).
    42. Hua, Y., Saxena, S., Henderson, C. L. & King, W. P. Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip. J. Micro/Nanolithography, MEMS MOEMS 6, 23012 (2007).
    43. Hua, Y., King, W. P. & Henderson, C. L. Nanopatterning materials using area selective atomic layer deposition in conjunction with thermochemical surface modification via heated AFM cantilever probe lithography. Microelectron. Eng. 85, 934–936 (2008).
    44. Puliyalil, H. & Cvelbar, U. Selective Plasma Etching of Polymeric Substrates for Advanced Applications. Nanomaterials 6, 108 (2016).
    45. Junkar, I., Modic, M. & Mozeti, M. Modification of PET surface properties using extremely non-equilibrium oxygen plasma. Open Chem. 13, 490–496 (2015).
    46. Yang, L., Chen, J., Guo, Y. & Zhang, Z. Surface modification of a biomedical polyethylene terephthalate (PET) by air plasma. Appl. Surf. Sci. 255, 4446–4451 (2009).
    47. Große-Kreul, S., Corbella, C. & Von Keudell, A. Chemical and physical sputtering of polyethylene terephthalate (PET). Plasma Process. Polym. 10, 225–234 (2013).
    48. Slepička, P., Kasálková, N. S., Stránská, E., Bačáková, L. & Švorčík, V. Surface characterization of plasma treated polymers for applications as biocompatible carriers. Express Polym. Lett. 7, 535–545 (2013).
    49. Pandiyaraj, K. N., Selvarajan, V., Deshmukh, R. R. & Bousmina, M. The effect of glow discharge plasma on the surface properties of Poly (ethylene terephthalate) (PET) film. Surf. Coatings Technol. 202, 4218–4226 (2008).
    50. Singh, N. L. et al. Influence of argon plasma treatment on polyethersulphone surface. Pramana - J. Phys. 80, 133–141 (2013).
    51. Große-Kreul, S., Corbella, C., Von Keudell, A., Ozkaya, B. & Grundmeier, G. Surface modification of polypropylene (PP) by argon ions and UV photons. Plasma Process. Polym. 10, 1110–1119 (2013).
    52. G. Binning, H. Rohrer, Ch. Gerber, and E. W. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett. 49, 57–61 (1982).
    53. Hansma, Paul K., J. K. H. Scanning Tunneling Microscopy. 1–23 (1986).
    54. Meyer, E. Atomic Force Microscopy. Progress in Surface Science. (1992).
    55. G. Binnig, C. F. Q. Atomic Force Microscope. Phys. Rev. Lett. 56, 9310–934 (1986).
    56. Oesterschulze, E.; Stopka, M. In Photothermal Imaging by Scanning Thermal Microscopy. (1996).
    57. Price D M, Reading M, Hammiche A, P. H. M. Micro-thermal analysis: scanning thermal microscopy and localized thermal analysis. Intl. J. Pharm. 192, 85–96 (1999).
    58. Gmelin, E., Fischer, R. & Stitzinger, R. Sub-micrometer thermal physics – An overview on SThM techniques. Thermochim. Acta 310, 1–17 (1998).
    59. Pylkki, R., Moyer, P. & West, P. Scanning near-field optical microscopy and scanning thermal microscopy. Japanese J. Appl. … 33, 3785–3790 (1994).
    60. Nelson, B. A. & King, W. P. Measuring material softening with nanoscale spatial resolution using heated silicon probes. Rev. Sci. Instrum. 78, 1–8 (2007).
    61. Huang, D.-A. In-Situ Thermal Analysis and Scanning Thermal Lithography in Micro and Nano Scale. Thesis (National Cheng Kung University, 2008).
    62. Hammiche, a, Reading, M., Pollock, H. M., Song, M. & Hourston, D. J. Localized thermal analysis using a miniaturized resistive probe. Rev. Sci. Instrum. 67, 4268–4274 (1996).
    63. Hammiche, a, Pollock, H. M., Song, M. & Hourston, D. J. Sub-surface imaging by scanning thermal microscopy. Meas. Sci. Technol. 7, 142–150 (1996).
    64. Yeh, C.-H. Plasmonic Resonances of Silver Nanoparticles Synthesized and Patterned by Scanning Thermal Lithography. Thesis. (National Cheng Kung University, 2012).
    65. Huang, C. M., Yeh, C. H., Chen, L., Huang, D. A. & Kuo, C. Energetic-assisted scanning thermal lithography for patterning silver nanoparticles in polymer films. ACS Appl. Mater. Interfaces 5, 120–127 (2013).
    66. Oates, T. W. H. & Christalle, E. Real-Time Spectroscopic Ellipsometry of Silver Nanoparticle Formation in Poly ( Vinyl Alcohol ) Thin Films. J. Phys. Chem. C 111, 182–187 (2007).
    67. Herrmann, L. O. & Baumberg, J. J. Watching single nanoparticles grow in real time through supercontinuum spectroscopy. Small 9, 3743–3747 (2013).
    68. Kim, J. H., Park, J. S. & Kim, M. G. Time-dependent change of Hyper-Rayleigh Scattering from silver nanoparticle aggregates induced by salt. Chem. Phys. Lett. 600, 15–20 (2014).
    69. Haugstad, G. Overview of Atomic Force Microscopy. Online Article. University of Minnesota

    下載圖示 校內:2022-02-09公開
    校外:2022-02-09公開
    QR CODE