簡易檢索 / 詳目顯示

研究生: 林怡慈
Lin, Yi-Tuz
論文名稱: 非揮發性電域在混相鐵酸鉍上的鬆弛研究
Study of non-volatile domain relaxation on mixed-phase BiFeO3
指導教授: 陳宜君
Chen, Yi-Jun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 61
中文關鍵詞: 混相鐵酸鉍鬆弛彈性位能保存
外文關鍵詞: mixed-phase BiFeO3, relaxation, elastic energy, retention
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非揮發性記憶體在積體電路中是很重要的元件。鐵電材料的電偶極矩方向可隨外加電場翻轉以及電域的成長可被外加電場調控,此特性開啟了對鐵電材料的非揮發性記憶體研究。而被外加電場翻轉的區域的維持時間是個一直以來想被克服的問題,本研究即討論奈米電域在混相鐵酸鉍退極化行為,我們利用15V 100ms的脈衝電場在混相鐵酸鉍上電極化翻轉出大小約100nm的電域,再利用壓電力顯微鏡觀察奈米電域隨時間的消退,我們發現奈米電域的域壁若與混相鐵酸鉍T-like相與R-like相的相邊界呈對稱結構則可停留300個小時以上,我們用週期性彈性位能模型解釋此穩定的現象。為了使奈米電域的穩定度增加我們利用操控樣品內部帶電缺陷的方式,結果施加電場方向與混相鐵酸鉍自發極化方向相同或相反都可以增加奈米電域的穩定度。發現施加順自發性極化方向的電場效果最好,使奈米電域在混相鐵酸鉍上存活了四個月以上。本論文引入應力參數來調制電域動態行為,此概念提供非揮發性記憶元件一個新的方向。

    Non-volatile memory is one of important device in integrated circuit. The spontaneous polarization and electrical doamain in ferroelectric material can be modulated by external electric field, which is the advantage for manufacturing the non-volatile memory. However, the retention of the switched domain is a key issue which has not been resolved. In our research, we discussed the polarization relaxation in mixed-phase BiFeO3(BFO). We applied 15V and 100ms pulse to switch nano-domain of size about 100nm and observed the nano-domain changing with time by Piezoresponse Force Microscopy (PFM). The symmetric structure composed by nano-domain and mixed-phase boundary causes the nano-domain to stay in a stable state and the relaxation time is larger than 300 hr. We use periodic elastic potential to explain the formation of this stable state. To enhance the retention on mixed-phase BFO, we controlled the electric defects and get a relaxation time larger than 4 months. The dynamic behavior of the domain modulated by elastic factors give a new direction to develop the non-volatile memory.

    摘要 I Study of non-volatile domain relaxation on mixed-phase BiFeO3 II 致謝 VII 總目錄 VIII 圖目錄 IX 第一章 緒論 1 第二章 文獻回顧 3 2.1 鐵電材料介紹 3 2.2 鐵酸鉍介紹 6 2.3 混相鐵酸鉍介紹 7 2.4 極化衰退與域壁運動 12 第三章 實驗原理與方法 16 3.1 AFM的結構與工作原理 16 3.2 壓電力顯微鏡的結構與工作原理 21 3.3 ScanAsyst掃描模式 24 第四章 實驗結果與討論 27 4.1 混相鐵酸鉍奈米尺度的物理特性 27 4.2 混相鐵酸鉍電域保存增強特性 35 4.3混相鐵酸鉍退極化位能模型 40 4.4 域壁鬆弛特性的調控 50 第五章 結論 58 參考資料 59

    [1]Chanthbouala, A. et al. Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7, 101-104, doi:10.1038/nnano.2011.213 (2012).

    [2]Tsymbal, E. Y. & Gruverman, A. FERROELECTRIC TUNNEL JUNCTIONS Beyond the barrier. Nat. Mater. 12, 602-604, doi:10.1038/nmat3669 (2013).

    [3]Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81-84, doi:10.1038/nature08128 (2009).

    [4]Gruverman, A. et al. Tunneling Electroresistance Effect in Ferroelectric Tunnel Junctions at the Nanoscale. Nano Lett. 9, 3539-3543, doi:10.1021/nl901754t (2009).

    [5]Maksymovych, P. et al. Polarization Control of Electron Tunneling into Ferroelectric Surfaces. Science 324, 1421-1425, doi:10.1126/science.1171200 (2009).

    [6]Garcia, V. et al. Ferroelectric Control of Spin Polarization. Science 327, 1106-1110, doi:10.1126/science.1184028 (2010).

    [7]Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3. Nat. Mater. 10, 753-758, doi:10.1038/nmat3098 (2011).

    [8]Zuhuang, C. et al. Low-symmetry Monoclinic Phases and Polarization Rotation Path Mediated by Epitaxial Strain in Multiferroic BiFeO 3 Thin Films. Adv. Funct. Mater. 21, 133-138, doi:10.1002/adfm.201001867 (2011).

    [9]He, Q. et al. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. 2, 5, doi:10.1038/ncomms1221 (2011).

    [10]Zhou, J. et al. Directed assembly of nano-scale phase variants in highly strained BiFeO3 thin films. J. Appl. Phys. 112, 5, doi:10.1063/1.4752395 (2012).

    [11]Beekman, C. et al. Phase Transitions, Phase Coexistence, and Piezoelectric Switching Behavior in Highly Strained BiFeO3 Films. Adv. Mater. 25, 5561-+, doi:10.1002/adma.201302066 (2013).

    [12]Damodaran, A. R. et al. Nanoscale Structure and Mechanism for Enhanced Electromechanical Response of Highly Strained BiFeO3 Thin Films. Adv. Mater. 23, 3170-+, doi:10.1002/adma.201101164 (2011).

    [13]Zhang, J. X. et al. Microscopic Origin of the Giant Ferroelectric Polarization in Tetragonal-like BiFeO3. Phys. Rev. Lett. 107, 5, doi:10.1103/PhysRevLett.107.147602 (2011).

    [14]Ren, W. et al. Ferroelectric Domains in Multiferroic BiFeO3 Films under Epitaxial Strains. Phys. Rev. Lett. 110, 5, doi:10.1103/PhysRevLett.110.187601 (2013).

    [15]Song, T. K., Yoon, J. G. & Kwun, S. I. Microscopic polarization retention properties of ferroelectric Pb(Zr,Ti)O-3 thin films. Ferroelectrics 335, 61-68, doi:10.1080/00150190600689332 (2006).

    [16]Fu, D. S., Suzuki, K., Kato, K. & Suzuki, H. Dynamics of nanoscale polarization backswitching in tetragonal lead zirconate titanate thin film. Appl. Phys. Lett. 82, 2130-2132, doi:10.1063/1.1565502 (2003).

    [17]Hong, J. W. et al. Nanoscale investigation of domain retention in preferentially oriented PbZr0.53Ti0.47O3 thin films on Pt and on LaNiO3. Appl. Phys. Lett. 75, 3183-3185, doi:10.1063/1.125271 (1999).

    [18]Ganpule, C. S. et al. Domain nucleation and relaxation kinetics in ferroelectric thin films. Appl. Phys. Lett. 77, 3275-3277, doi:10.1063/1.1322051 (2000).

    [19]Gruverman, A. et al. Nanoscale imaging of domain dynamics and retention in ferroelectric thin films. Appl. Phys. Lett. 71, 3492-3494, doi:10.1063/1.120369 (1997).

    [20]Gruverman, A. & Tanaka, M. Polarization retention in SrBi2Ta2O9 thin films investigated at nanoscale. J. Appl. Phys. 89, 1836-1843, doi:10.1063/1.1334938 (2001).

    [21]Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719-1722, doi:10.1126/science.1080615 (2003).

    [22]Lu, H. X., Zhao, J. L., Sun, J. R., Wang, J. & Shen, B. G. Ferroelectric domain structure of the BiFeO3 film grown on different substrates. Physica B 406, 305-308, doi:10.1016/j.physb.2010.11.011 (2011).

    [23]Streiffer, S. K. et al. Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 83, 2742-2753, doi:10.1063/1.366632 (1998).

    [24]Zavaliche, F. et al. Polarization switching in epitaxial BiFeO3 films. Appl. Phys. Lett. 87, 3, doi:10.1063/1.2149180 (2005).

    [25]Zeches, R. J. et al. A Strain-Driven Morphotropic Phase Boundary in BiFeO3. Science 326, 977-980, doi:10.1126/science.1177046 (2009).

    [26]Kim, D. J. et al. Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett. 95, 4, doi:10.1103/PhysRevLett.95.237602 (2005).

    [27]Lou, X. J. Polarization retention on short, intermediate, and long time scales in ferroelectric thin films. J. Appl. Phys. 105, 5, doi:10.1063/1.3106663 (2009).

    [28]Morozovska, A. N., Eliseev, E. A., Svechnikov, G. S. & Kalinin, S. V. Mesoscopic mechanism of the domain wall interaction with elastic defects in uniaxial ferroelectrics. J. Appl. Phys. 113, 9, doi:10.1063/1.4801959 (2013).

    下載圖示 校內:2019-08-22公開
    校外:2019-08-22公開
    QR CODE