| 研究生: |
郭春國 Guo, Chun-Guo |
|---|---|
| 論文名稱: |
研究肝癌細胞中CPAP蛋白在IL-6/STAT3途徑上的功能性角色 Studying the functional role of CPAP in IL-6/STAT3 pathway in HCC |
| 指導教授: |
洪良宜
Hung, Liang-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物資訊與訊息傳遞研究所 Insitute of Bioinformatics and Biosignal Transduction |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | IL-6 、STAT3 、CPAP 、肝癌 、IL-8 、VEGF |
| 外文關鍵詞: | IL-6, STAT3, CPAP, Hepatocelluar carcinoma, IL-8, VEGF |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝癌為全球最常見的惡性腫瘤之一,其癌症相關致死率則排名全球第三,目前治療肝癌的方式侷限於肝臟切除與手術移植。肝癌的特性為具高度的血管分佈,能夠幫助腫瘤細胞生長。在肝癌細胞中細胞激素IL-6能夠活化STAT3蛋白。另外,中心體蛋白CPAP除了在中心體扮演重要角色外,亦為NF-B與STAT5的轉錄輔助活化因子 (transcriptional co-activator)。實驗室先前的研究發現,CPAP在B型肝炎病毒感染所致的肝癌病人中有過量表現的情形。本論文主要探討在肝癌中CPAP參與在IL-6/STAT3訊息傳遞途徑中的功能性角色。我們的研究發現,在IL-6刺激下,過量表現GFP-CPAP可增加STAT3轉錄活性及其下游標的基因的表現。在免疫共沉澱 (co- immunoprecipitation)的實驗中也觀察到CPAP可以和STAT3形成複合體。此外,我們也發現,在肝癌檢體中CPAP和p-STAT3的表現呈正相關,此外,根據研究報導指出IL-8會藉由增加血管內皮細胞存活、增生、基質金屬蛋白酶的分泌調控細胞內血管新生。有趣的是,在IL-6刺激下,過量表現GFP-CPAP可增加IL-8的啟動子活性,且在酵素免疫分析法 (ELISA)實驗中也發現,GFP-CPAP能增加IL-8與VEGF的蛋白分泌。利用原位異種移植與脾臟注射動物模式,我們發現CPAP會促進肝癌細胞之生長和轉移。此外,由肝癌檢體也發現CPAP與病人血清中IL-8蛋白的表現呈正相關。這些結果顯示,CPAP可能透過IL-6/STAT3途徑促進IL-8與VEGF的表現而導致肝癌的惡化。
Overexpression of GFP-CPAP significantly enhanced STAT3-driven transcriptional activation in response to IL-6 treatment. Overexpressed GFP-CPAP transcriptionally increased the targeted gene expression of STAT3 upon IL-6 stimulation. Co-immunoprecipitation showed that CPAP can form a complex with STAT3 in response to IL-6 treatment. Immunoblot analysis further indicates that overexpression of CPAP is positively correlated with activated STAT3 (p-STAT3) in HCC tissues. On the other hand, it was reported that interleukin-8 (IL-8) can regulate angiogenesis by enhancing endothelial cell survival, proliferation and matrix metalloproteinases production. Interestingly, overexpression of GFP-CPAP enhances the promoter activity of IL-8 under IL-6 treatment. The enhanced expression of IL-8 and VEGF by overexpressed GFP-CPAP were further confirmed by ELISA. By orthotopic and splenic mouse model, it showed that overexpressed CPAP can promote tumor growth and metastasis. Moreover, the expression of CPAP is positively correlated with plasma IL-8 in HCC patients. Taken together, our results suggest that CPAP may contribute to HCC malignancy through the IL-6/STAT3 pathway-mediated IL-8 and VEGF expressions.
[1]Bruix, J., Gores, G.J. and Mazzaferro, V. (2014). Hepatocellular carcinoma: clinical frontiers and perspectives. Gut 63, 844-55.
[2]Llovet, J.M. et al. (2008). Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359, 378-90.
[3]Villanueva, A. and Llovet, J.M. (2014). Liver cancer in 2013: Mutational landscape of HCC--the end of the beginning. Nat Rev Clin Oncol 11, 73-4.
[4]Wang, R. et al. (2013). MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology 58, 642-53.
[5]He, G. and Karin, M. (2011). NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res 21, 159-68.
[6]Nagasaki, T., Hara, M., Nakanishi, H., Takahashi, H., Sato, M. and Takeyama, H. (2014). Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer 110, 469-78.
[7]Meng, F., Yamagiwa, Y., Taffetani, S., Han, J. and Patel, T. (2005). IL-6 activates serum and glucocorticoid kinase via p38alpha mitogen-activated protein kinase pathway. Am J Physiol Cell Physiol 289, C971-81.
[8]Kobayashi, S., Werneburg, N.W., Bronk, S.F., Kaufmann, S.H. and Gores, G.J. (2005). Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 128, 2054-65.
[9]Reichner, J.S., Mulligan, J.A., Spisni, R., Sotomayor, E.A., Albina, J.E. and Bland, K.I. (1998). Effect of IL-6 overexpression on the metastatic potential of rat hepatocellular carcinoma cells. Ann Surg Oncol 5, 279-86.
[10]Trikha, M., Corringham, R., Klein, B. and Rossi, J.F. (2003). Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 9, 4653-65.
[11]Tilg, H., Wilmer, A., Vogel, W., Herold, M., Nolchen, B., Judmaier, G. and Huber, C. (1992). Serum levels of cytokines in chronic liver diseases. Gastroenterology 103, 264-74.
[12]Nakagawa, H. et al. (2009). Serum IL-6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: an analysis based on gender differences. Int J Cancer 125, 2264-9.
[13]Wong, V.W. et al. (2009). High serum interleukin-6 level predicts future hepatocellular carcinoma development in patients with chronic hepatitis B. Int J Cancer 124, 2766-70.
[14]Giannitrapani, L., Soresi, M., Giacalone, A., Campagna, M.E., Marasa, M., Cervello, M., Marasa, S. and Montalto, G. (2011). IL-6 -174G/C polymorphism and IL-6 serum levels in patients with liver cirrhosis and hepatocellular carcinoma. Omics 15, 183-6.
[15]Shuai, K., Stark, G.R., Kerr, I.M. and Darnell, J.E., Jr. (1993). A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261, 1744-6.
[16]Darnell, J.E., Jr., Kerr, I.M. and Stark, G.R. (1994). Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415-21.
[17]Siveen, K.S. et al. (2014). Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta 1845, 136-54.
[18]Aggarwal, B.B., Kunnumakkara, A.B., Harikumar, K.B., Gupta, S.R., Tharakan, S.T., Koca, C., Dey, S. and Sung, B. (2009). Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 1171, 59-76.
[19]Becker, S., Groner, B. and Muller, C.W. (1998). Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394, 145-51.
[20]Takeda, K., Noguchi, K., Shi, W., Tanaka, T., Matsumoto, M., Yoshida, N., Kishimoto, T. and Akira, S. (1997). Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A 94, 3801-4.
[21]Li, W., Liang, X., Kellendonk, C., Poli, V. and Taub, R. (2002). STAT3 contributes to the mitogenic response of hepatocytes during liver regeneration. J Biol Chem 277, 28411-7.
[22]Inoue, H. et al. (2004). Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med 10, 168-74.
[23]Heinrich, P.C., Behrmann, I., Muller-Newen, G., Schaper, F. and Graeve, L. (1998). Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 334 ( Pt 2), 297-314.
[24]Quaglino, A., Schere-Levy, C., Romorini, L., Meiss, R.P. and Kordon, E.C. (2007). Mouse mammary tumors display Stat3 activation dependent on leukemia inhibitory factor signaling. Breast Cancer Res 9, R69.
[25]Jiang, R. et al. (2013). IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer 13, 59.
[26]Park, O.K., Schaefer, T.S. and Nathans, D. (1996). In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc Natl Acad Sci U S A 93, 13704-8.
[27]Vignais, M.L., Sadowski, H.B., Watling, D., Rogers, N.C. and Gilman, M. (1996). Platelet-derived growth factor induces phosphorylation of multiple JAK family kinases and STAT proteins. Mol Cell Biol 16, 1759-69.
[28]Tian, S.S., Lamb, P., Seidel, H.M., Stein, R.B. and Rosen, J. (1994). Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood 84, 1760-4.
[29]Chen, R.J., Ho, Y.S., Guo, H.R. and Wang, Y.J. (2008). Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferation in human bladder cancer cells. Toxicol Sci 104, 283-93.
[30]Bito, T., Sumita, N., Masaki, T., Shirakawa, T., Ueda, M., Yoshiki, R., Tokura, Y. and Nishigori, C. (2010). Ultraviolet light induces Stat3 activation in human keratinocytes and fibroblasts through reactive oxygen species and DNA damage. Exp Dermatol 19, 654-60.
[31]Burova, E.B., Gonchar, I.V. and Nikol'skii, N.N. (2003). [STAT1 and STAT3 activation by oxidative stress in A431 cells involves Src-dependent EGF receptor transactivation]. Tsitologiia 45, 466-77.
[32]Subramaniam, A. et al. (2013). Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta 1835, 46-60.
[33]Masciocchi, D., Gelain, A., Villa, S., Meneghetti, F. and Barlocco, D. (2011). Signal transducer and activator of transcription 3 (STAT3): a promising target for anticancer therapy. Future Med Chem 3, 567-97.
[34]Bromberg, J.F., Wrzeszczynska, M.H., Devgan, G., Zhao, Y., Pestell, R.G., Albanese, C. and Darnell, J.E., Jr. (1999). Stat3 as an oncogene. Cell 98, 295-303.
[35]Yu, H. and Jove, R. (2004). The STATs of cancer--new molecular targets come of age. Nat Rev Cancer 4, 97-105.
[36]Li, W.C., Ye, S.L., Sun, R.X., Liu, Y.K., Tang, Z.Y., Kim, Y., Karras, J.G. and Zhang, H. (2006). Inhibition of growth and metastasis of human hepatocellular carcinoma by antisense oligonucleotide targeting signal transducer and activator of transcription 3. Clin Cancer Res 12, 7140-8.
[37]Jarnicki, A., Putoczki, T. and Ernst, M. (2010). Stat3: linking inflammation to epithelial cancer - more than a "gut" feeling? Cell Div 5, 14.
[38]He, B. et al. (2003). SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci U S A 100, 14133-8.
[39]Kovalovich, K., DeAngelis, R.A., Li, W., Furth, E.E., Ciliberto, G. and Taub, R. (2000). Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatology 31, 149-59.
[40]Haga, S. et al. (2003). Stat3 protects against Fas-induced liver injury by redox-dependent and -independent mechanisms. J Clin Invest 112, 989-98.
[41]Cressman, D.E., Greenbaum, L.E., DeAngelis, R.A., Ciliberto, G., Furth, E.E., Poli, V. and Taub, R. (1996). Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science 274, 1379-83.
[42]Liu, Y., Li, P.K., Li, C. and Lin, J. (2010). Inhibition of STAT3 signaling blocks the anti-apoptotic activity of IL-6 in human liver cancer cells. J Biol Chem 285, 27429-39.
[43]Naugler, W.E., Sakurai, T., Kim, S., Maeda, S., Kim, K., Elsharkawy, A.M. and Karin, M. (2007). Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121-4.
[44]He, G. et al. (2010). Hepatocyte IKKbeta/NF-kappaB inhibits tumor promotion and progression by preventing oxidative stress-driven STAT3 activation. Cancer Cell 17, 286-97.
[45]Yang, X. et al. (2013). MicroRNA-26a suppresses tumor growth and metastasisof human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology 58, 158-70.
[46]Wan, S. et al. (2014). Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 147, 1393-404.
[47]Hung, L.Y., Tang, C.J. and Tang, T.K. (2000). Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the gamma-tubulin complex. Mol Cell Biol 20, 7813-25.
[48]Hung, L.Y., Chen, H.L., Chang, C.W., Li, B.R. and Tang, T.K. (2004). Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly. Mol Biol Cell 15, 2697-706.
[49]Peng, B., Sutherland, K.D., Sum, E.Y., Olayioye, M., Wittlin, S., Tang, T.K., Lindeman, G.J. and Visvader, J.E. (2002). CPAP is a novel stat5-interacting cofactor that augments stat5-mediated transcriptional activity. Mol Endocrinol 16, 2019-33.
[50]Koyanagi, M., Hijikata, M., Watashi, K., Masui, O. and Shimotohno, K. (2005). Centrosomal P4.1-associated protein is a new member of transcriptional coactivators for nuclear factor-kappaB. J Biol Chem 280, 12430-7.
[51]Yang, S.T. et al. (2013). SUMOylated CPAP is required for IKK-mediated NF-kappaB activation and enhances HBx-induced NF-kappaB signaling in HCC. J Hepatol 58, 1157-64.
[52]Li, A., Dubey, S., Varney, M.L., Dave, B.J. and Singh, R.K. (2003). IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170, 3369-76.
[53]Choi, S.H. et al. (2014). Inhibition of tumour angiogenesis and growth by small hairpin HIF-1alpha and IL-8 in hepatocellular carcinoma. Liver Int 34, 632-42.
[54]Niu, G. et al. (2002). Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21, 2000-8.
[55]Heindryckx, F. and Gerwins, P. (2015). Targeting the tumor stroma in hepatocellular carcinoma. World J Hepatol 7, 165-76.
校內:2017-08-21公開