簡易檢索 / 詳目顯示

研究生: 王郁權
Wang, Yu-Chuan
論文名稱: 噴霧乾燥對固態反應合成鈦酸鋇之影響研究
Spray Drying Influences the Synthesis of Barium Titanate in Solid State Reaction
指導教授: 黃紀嚴
Huang, Chi-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 66
中文關鍵詞: 固態反應法噴霧乾燥鈦酸鋇
外文關鍵詞: barium titanate, spray drying, solid state reaction
相關次數: 點閱:102下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 酸鋇結構之材料具備壓電性、鐵電性以及高介電性質,此一系列之陶瓷體在現今科技產業中應用廣泛。目前工業上鈦酸鋇粉末的合成方法以固態反應法為主,以二氧化鈦及碳酸鋇為起始原料,經混合及高溫熱處理(1200 ℃)後,合成鈦酸鋇。

    本研究改變傳統固態反應法之乾燥漿料之步驟,以噴霧乾燥取代烘箱乾燥方法。噴霧乾燥本為陶瓷製程上一種造粒方法,形成顆粒堆積緊密之圓球凝聚體,與烘箱乾燥之顆粒隨機散佈比較,顆粒間接觸面增加許多;此外,噴霧乾燥能快速乾燥漿料,顆粒混合於乾燥過程較不被影響,保持良好混合,獲得較低熱處理溫度。

    實驗方面以奈米碳酸鋇及二氧化鈦混合粉末與微米碳酸鋇及二氧化鈦混合粉末作為起始原料。微米粉末經球磨混合 0.5 小時後,噴霧乾燥無助降低熱處理溫度,反而受顆粒原始形態之限制,形成非計量比之凝聚體,未能合成鈦酸鋇;微米粉末球磨混合 24 小時,噴霧乾燥後之熱處理溫度雖與烘箱乾燥之後熱處理溫度相同,但可減少持溫時間。奈米粉末經球磨混合 0.5 小時、噴霧乾燥後,經 800 ℃、1 小時之熱處理即合成鈦酸鋇,與其它奈米粉末經不同球磨時間、不同乾燥方式之熱處理溫度相較之下,熱處理溫度大幅降低 250 ℃。但奈米粉末於球磨 24 小時過程中,因添加較多量分散劑調整漿料黏度,以致噴霧乾燥時形成甜甜圈狀凝聚體,凝聚體其內部顆粒會發生偏析現象,反而使得顆粒混合不均,故無法於較低溫(800 ℃)之熱處理獲得鈦酸鋇。

    Barium-titanate-based ceramic materials are applied widely due to its piezoelectricity, ferroelectricity, and excellent dielectric properties. The major route of preparation of barium titanate is solid-state reaction of barium carbonate and titania mixed at temperatures as high as 1200 ℃.

    This study substitutes spray drying for traditio- nal drying in solid-state reaction. Basically, spray drying is one of the granulation routes. Closely-packed granules will appear via spray drying. Compared with loosely-scattered particles via tradition drying, the particle contacts of closely-packed granule seem more. Furthermore, spray drying can dry suspension rapidly. Consequen- tly, well-mixed state of suspension is the same as that of drying powder. In accordance with above two characteristic of spray drying, lower synthesis temperature of barium titanate is expected.

    One mixture of nano-sized and the other mixture of micro-sized are raw powders. The morphology of the micro-sized powder with milling for 0.5 h leads to forming nonstoichiometric granule via spray drying. Therefore, barium titanate can’t be formed after calcination. Although the synthesis temperature of barium titanate for micro-sized powder with milling for 24 h followed via spray drying and via traditional drying are the same, using spray drying can contract the reacting time. For nano-sized powder with milling for 0.5 h followed via spray-drying, barium titanate calcined for 1 h at 800 oC is formed. Compared with other nano-sized raw powders with distinct milling time followed by distinct drying method, it lowers the synthesis temperature of barium titanate by ca. 250 ℃.

    中文摘要 I Abstract II 誌謝 Ⅲ 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 前言 1 1-2 研究方向及目的 2 第二章 理論基礎及前人研究 4 2-1 鈦酸鋇之固態反應合成 4 2-2 鈦酸鋇晶體結構 8 2-3 鈦酸鋇之粒徑效應 10 2-3-1 常溫下之立方相 10 2-3-2 常溫下立方相結構穩定模型 10 2-3-1-1 表面層模型 10 2-3-1-2 單一相模型 10 2-4 研磨效應 13 2-5 膠體之分散 14 2-6 噴霧乾燥之凝聚體形態 16 2-6-1 影響凝聚體結構因素 16 2-6-2 霧滴穩定性 18 2-6-2-1 霧滴粒徑 19 2-6-2-2 水珠比重 19 2-6-2-3 界面張力 19 2-6-3 流體力學影響因素 20 第三章 實驗方法與步驟 23 3-1 實驗材料 23 3-2 實驗步驟 23 3-2-1 漿料混合製備 23 3-2-2 漿料乾燥 23 3-2-3 粉末熱處理 27 3-3 噴霧乾燥設備 27 3-4 性質分析 29 3-4-1 黏度測定 29 3-4-2 熱行為分析 29 3-4-3 粉末晶相鑑定 29 3-4-4 顯微結構觀察 31 第四章 結果與討論 32 4-1 漿料黏度變化與分散劑效果 32 4-2 球磨效果 32 4-3 混合粉末性質 33 4-3-1 相鑑定 33 4-3-2 粉末形態 37 4-3-4 粉末熱行為分析 46 4-4 熱處理後粉末 52 4-4-1 相鑑定 52 4-4-2 粉末形態 60 第五章 結論 62 參考文獻 64

    1.Lee W. S., D. F. K. Hennings, and T. Y. Tseng, “Effect of Calcination
    Temperature and A/B-ratio on Dielectric Properties of (Ba,Ca)- (Ti,Zr,MnO)O3
    Multilayer Capacitors with Ni Electrodes,” J. Am. Ceram. Soc., 83 [1],
    pp.402-406, 2000.
    2.汪建民主編,“陶瓷技術手冊”,中華民國粉末冶金協會及中華民國產業科技發展協進會
    出版,1999,pp.683-713。
    3.Hennings D. F. K., C.Metzmacher, and B. Schreinemacher, “Defect Chemistry and
    Microstructure of Hydrothermal Barium Titanate,” J. Am. Ceram. Soc., 84 [1],
    pp.179-82, 2001.
    4.Rase D. E., and R. Roy, “Phase Equilibria in the System BaO-TiO2,” J. Am.
    Ceram. Soc., 38, pp.896-900, 1987.
    5.Cater R. E., “Kinetic Model for Solid-State Relation.” J. Chem. Phys., 34,
    pp.2010, 1961.
    6.Felgner K. H., T. Muller, H. T. LanGhammer, and H. P. Abicht, “On the
    Formation of BaTiO3 from BaCO3 and TiO2 by Microwave and Conventional
    Heating,” Mater. Lett., 58, pp.1943-1947, 2004.
    7.Beauger A., J. C. Mutin, and J. C. Niepce, “Synthesis Reaction of Metatitanate
    BaTiO3, Part 1,” J. Mater. Sci., 18, pp.3041-3046, 1983.
    8.Beauger A., J. C. Mutin, and J. C. Niepce, “Synthesis Reaction of Metatitanate
    BaTiO3, Part 2,” J. Mater. Sci., 18, pp.3543-3550, 1983.
    9.久保輝一郎,加藤誠軌,藤田恭,”二氧化鈦與碳酸鋇之固態反應,”日本工業化學雜
    誌,70 (6),pp.847-853, 1967.
    10.Kingery W. D., H. K. Bowen, and D. R. Uhlmann. Introduction to Ceramics, John
    Wiley and Sons, New York, 1976.
    11.Jaffe B., W. R. Cook. Jr, and H. Jaffe, Piezoelectric Ceramics, William R.
    Cook, Jr. and Hans Jaffe Gould Inc., Cleveland, Ohio, U. S. A , 1971.
    12.Arlt G., D. F.K. Hennings, and G. de With, “Dielectric Properties of
    Fine-grained Barium Titanate Ceramics,” J. Appl. Phys., 58 [4], pp.1619-1625,
    1985.
    13.Uchino K., E. Sadanaga, and T. Hirohe, “Dependence of the Crystal Structure
    on Particle Size in Barium Titanate,” J. Am. Ceram. Soc.,
    72 [8], pp.1555-1558, 1989.
    14.Hennings D. F. K., “Barium Titanate Based Ceramic Materials for Dielectric
    Use,” Int. J. High Tcchnol. Ceram., 3, pp.91-111,1987.
    15.Malbe S., J. C. Mutin, and J. C. Niepce, “Distribution des Parametres de
    Maille Cristalline dans dcs Echantillon, Pulverulents de BaTiO3,”
    J. Chim. Phys., 89, pp.825-843, 1992.
    16.Vivekiinandan R., and T. R. N. Kutty, “Characterization of Barium Titanate
    Fine Powders Formed from Hydrothermal Crystallization,” Powder Technol., 57,
    pp.181-192.
    17.Lee J. H., H. H. Nersisyan , H. H. Lee, and C. W. Won,
    “Structural Change of Hydrothermal BaTiO3 Powder,” J. Mat. Sci., 39,
    pp.1397-1401, 2004.
    18.Kong L. B., J. Ma, H. Huang , R. F. Zhang, and W. X. Que, “Barium Titanate
    Derived from Mechanochemically Activated Powders,” J. All. And Comp., 337,
    pp.226-230, 2002.
    19.Miclea C., C. Tanasoiu, A. Gheorghiu, C. F. Miclea, and V. Tanasoiu,
    “Synthesis and Piezoelectric Properties of Nanocrystalline PZT-based
    Ceramics Prepared by High Energy Ball Milling Process,”J. Mat. Sci., 39,
    pp.5431-5434, 2004.
    20.Xue J., J. Wang, and D. Wan, “Nanosized Barium Titanate Powder by Mechanical
    Activation,” J. Am. Ceram. Soc., 83 [1], pp.232–234, 2000.
    21.Robert J. P. and L. Bergstorm, Surface and Colloid Chemistry in Advance
    Ceramics Processing, 1994, Copyrite by MARCEL. DEKKER.
    22.Iskandar F., L. Gradon, and K. Okuyama, “Control of the Morphology of
    Nanostructured Particles Prepared by the Spray Drying of A Nanoparticle Sol,”
    J. of Coll. Int. Sci. 265, pp.296–303, 2003.
    23.Hess H., J. Clemmens, D. Qin, J. Howard, and V. Vogel, “Light -controlled
    Molecular Shuttles Made from Motor Proteins Carrying Cargo on Engineered
    Surfaces,” Nano Lett., 1 [5], pp.235-239, 2001.
    24.Velev D., A. M. Lenhoff, and E. W. Kaler, “A Class of microstructured
    Particles Through Colloidal Crystallization,” Science, 287, pp.2240-2243,
    2000.
    25.Kingery W. D., H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd
    Ed., John Wiley and Sons, New York, 1976.
    26.Templton L. K. and J. A. Pask, “Formation of BaTiO3 from BaCO3 and TiO2 in
    Air and CO2,” J. Amer. Cream. Soc., 42, pp.212, 1959.
    27.Brzozowski E. and M. S. Castro, “Lowering the Synthesis Temperature of
    High-purity BaTiO3 Powders by Modifications in the Processing Conditions,”
    thermochimica Acta, 398, pp. 123-129, 2003.
    28.Lander J.J., “Polymorphism and Anion Rotational Disorder in the Alkaline
    Earth Carbonates,” J. Chem. Phy. 17 [12], pp.892-890, 1949.

    下載圖示 校內:2006-07-20公開
    校外:2006-07-20公開
    QR CODE