簡易檢索 / 詳目顯示

研究生: 邱重毅
Chiou, Chung-yi
論文名稱: 姬蝴蝶蘭開花時間相關基因(PeEFSL)之選殖與分析
Molecular cloning and analysis of EARLY FLOWERING IN SHORT DAYS like (PeEFSL) gene from Phalaenopsis equestris
指導教授: 吳文鑾
Wu, Wen-luan
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 開花
外文關鍵詞: flower, SET, EFS
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開花為多數植物繁延後代延續生命的重要階段。在模式植物阿拉伯芥(Arabidopsis thaliana)開花時間途徑的研究中,開花過程主要由四條訊息傳遞途徑所調控,分別為光週期、春化作用、吉貝素及自發性調控途徑,此外還有FRI (FRIGIDA)調控途徑,EFS (early flowering in short days)和其它蛋白形成PAF1相似蛋白複合體,透過組織蛋白甲基化的表觀調控方式共同影響目標基因FLC的表現。蝴蝶蘭為國內重要的經濟花卉之一,但其幼年期長,產業界常需要透過催花調控花期。由於本實驗室已有姬蝴蝶蘭開花時間相關基因PeEFSL (Phalaenopsis equestris early flowering in short days like)部份序列片段,因此實驗目的為進一步選殖PeEFSL基因,並進行特性分析。設計引子利用RACE及RT-PCR方式獲得PeEFSL cDNA序列,另外也利用BAC選殖株Pe-NCKU-HBAC-1108G09和1031M24選殖PeEFSL基因體DNA。比對分析PeEFSL胺基酸序列,發現其具有CW、AWS、SET及Post-SET 四個domain。姬蝴蝶蘭PeEFSL與單子葉植物水稻EFS (SDG725)胺基酸相似度為40.6%,與雙子葉植物阿拉伯芥EFS (SDG8)胺基酸相似度為37.7%。分子親緣演化關係分析顯示PeEFSL在演化上較接近同為單子葉植物水稻之EFS (SDG725)基因。分析PeEFSL基因體DNA結構,發現PeEFSL前14個exon長度和阿拉伯芥及水稻EFS很接近,但第15個exon之後的替代性剪接(Alternative splicing)方式較接近水稻SDG725。分析PeEFSL胺基酸結構,發現CW domain包含6個cysteine及3個tryptophan,其功能可能扮演和其它蛋白形成複合體的角色,SET domain中具有三個保守motifs,分別為GYG、NHSCDPN及EITFDY motifs,推測PeEFSL具有組織蛋白離胺酸甲基轉移酶功能。利用南方墨點法分析顯示PeEFSL為單一拷貝基因。利用RT-PCR分析PeEFSL表現結果顯示,在姬蝴蝶蘭葉、根、花及花苞中PeEFSL表現並無明顯的組織特異性。綜合上述結果,推測PeEFSL為姬蝴蝶蘭開花時間基因,具有組織蛋白離胺酸甲基轉移酶功能。

    Flowering is critical to reproductive success of many plants. The floral transition in model plant Arabidopsis thaliana is regulated by four major flowering time pathways: the photoperiod, vernalization, gibberellin dependent and autonomous pathways. Moreover, in FRI mediated (FRIGIDA) pathway, PAF1-like (RNA polymerase II associated factor 1) complex is found to recruit histone methyltransferase EFS (early flowering in short days) to methylate FLC gene. Phalaenopsis orchid is one of the most important commercial floral crops in Taiwan, but usually has long juvenile periods. Therefore, studying the flowering time genes of orchid will contribute to orchid industry for flowering time regulation. The objectives of this study were cloning and characterization of PeEFSL (Phalaenopsis equestris early flowering in short days like) from P. equestris. The PeEFSL cDNA was obtained by using RACE and RT-PCR. The PeEFSL genomic DNA was cloned from BAC clone (Pe-NCKU-HBAC-1108G09 and 1031M24).The amino acid sequence of PeEFSL contained conserved CW、AWS、SET and Post-SET domains. The amino acid sequence of the PeEFSL protein was 40.6% identical with the rice EFS (SDG725) and 37.7% with Arabidopsis EFS (SDG8). Molecular phylogenetic analysis of evolutionary relationship revealed that PeEFSL was closer to the monocot rice SDG725 gene. The structural analysis of PeEFSL genomic DNA revealed that the way of PeEFSL alternative splicing was similar to rice SDG725. The structural analysis of PeEFSL amino acid revealed that CW domain contained 6 cysteines and 3 tryptophans. They were predicted to play a part in promoting protein-protein interaction. SET domain contained three conserved motifs, including GYG、NHSCDPN and EITFDY motifs, suggesting that PeEFSL may function as histone lysine methyltransferase. Southern blot analysis indicated that PeEFSL was a single-copy gene. RT-PCR analysis of P. equestris leaf, root, flower and floral bud indicated that gene expression of PeEFSL was not tissue specific. In conclusion, PeEFSL may be the flowering time gene which function as histone lysine methyltransferase in P. equestris.

    目錄 中文摘要……………………………………………………i 英文摘要.…………………………………………………ii 誌謝………………………………………………………iii 目錄…………………………………………………………iv 表目錄………………………………………………………vi 圖目錄………………………………………………………vii 附錄目錄……………………………………………………viii 縮寫名詞對照表……………………………………………ix 第一章 緒論…………………………………………………1 ㄧ、調控開花時間之訊息傳遞途徑……………………1 二、調控開花時間中心樞鈕者…………………………1 三、自發性調控途徑……………………………………2 四、春化作用途徑………………………………………3 五、FRI調控途徑…………………………………………4 六、單子葉植物水稻開花途徑之研究…………………5 七、開花時間基因EFS之研究……………………………6 八、蝴蝶蘭簡介…………………………………………8 九、研究目的……………………………………………9 第二章 實驗材料與方法……………………………………11 一、實驗材料……………………………………………11 二、實驗方法……………………………………………12 1. 蝴蝶蘭total RNA的萃取………………………12 2. 蝴蝶蘭基因組DNA的萃取………………………13 3. Colony PCR………………………………………14 4. 姬蝴蝶蘭PeEFSL基因體DNA之選殖……………14 5. 姬蝴蝶蘭PeEFSL基因cDNA之選殖………………17 6. 隨機引子探針的製備……………………………18 7. 南方雜合實驗(Southern hybridization)……18 8. 北方雜合實驗(Northern hybridization)……20 第三章 結果…………………………………………………22 一、姬蝴蝶蘭PeEFSL基因體DNA之選殖…………………22 二、姬蝴蝶蘭PeEFSL cDNA之選殖………………………23 三、姬蝴蝶蘭PeEFSL cDNA之序列與親緣演化分析……23 四、姬蝴蝶蘭PeEFSL基因及其胺基酸之結構…………24 五、姬蝴蝶蘭PeEFSL基因之組成………………………26 六、姬蝴蝶蘭PeEFSL基因之表現分析…………………26 第四章 討論…………………………………………………28 一、姬蝴蝶蘭PeEFSL基因之選殖與序列分析…………28 二、姬蝴蝶蘭PeEFSL cDNA之序列與親源演化分析……28 三、姬蝴蝶蘭PeEFSL基因及其胺基酸之結構…………29 四、姬蝴蝶蘭PeEFSL基因之組成………………………32 五、姬蝴蝶蘭PeEFSL基因之表現分析…………………33 第五章 結論及未來展望……………………………………35 第六章 參考文獻……………………………………………36 表目錄 表一、本篇論文所使用之引子………………………………42 表二、本篇論文使用之姬蝴蝶蘭BAC選殖株(clones)………43 表三、阿拉伯芥、水稻與姬蝴蝶蘭EFS基因結構之比較……44 表四、阿拉伯芥、水稻與姬蝴蝶蘭EFS胺基酸相似度比較…45 圖目錄 圖一、Colony PCR及南方墨點法分析姬蝴蝶蘭BAC基因庫中具有 PeEFSL基因組成之選殖株…………………………………46 圖二、BAC選殖株中姬蝴蝶蘭PeEFSL基因體DNA位置簡圖………47 圖三、姬蝴蝶蘭PeEFSL胺基酸序列之親疏水性分析……………48 圖四、姬蝴蝶蘭PeEFSL cDNA及轉譯之胺基酸序列……………49 圖五、PeEFSL與水稻及阿拉伯芥之EFS胺基酸序列比對………53 圖六、姬蝴蝶蘭與其他植物EFS基因間的親緣演化分析………56 圖七、姬蝴蝶蘭PeEFSL基因結構功能簡圖………………………57 圖八、南方墨點法分析姬蝴蝶蘭PeEFSL基因族系組成…………58 圖九、RT-PCR分析PeEFSL基因在姬蝴蝶蘭表現情形……………59 圖十、北方墨點法分析……………………………………………60 附錄目錄 附錄ㄧ、阿拉伯芥調控開花時間之訊息傳遞途徑………………61 附錄二、水稻調控開花時間之訊息傳遞途徑……………………62 附錄三、阿拉伯芥PAF1相似蛋白複合體活化FLC轉錄模式………63 附錄四、植物SET蛋白domain結構分析……………………………64 附錄五、yT&A選殖載體圖譜………………………………………65

    王明吉、李哖,1991,光度對蝴蝶蘭小苗生長、開花及碳水化合物及葉片酸度變化之影響,中國園藝,37(4): 290.

    李哖、林菁敏,1984,溫度對白花蝴蝶蘭生長發育與開花之影響,中國園藝,34: 223-231.

    李哖、林菁敏,1987,蝴蝶蘭之花期調節,台中區農業改良場特刊,10: 27-44.

    李哖、楊學琳,2000,溫度及日長對朵麗蝶蘭Doritaenopsis Purple Gem生長與開花的影響,產業科技發展學術合作論文集,I: 19-28.

    陳文輝,2002,蝴蝶蘭的品種改良,科學發展,351: 32-39.

    Ausin I., Alonso-Blanco C., Jarillo J.A., Ruiz-Garcia L. and Martinez-Zapater J.M. (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat. Genet. 36: 162–166.

    Bastow R., Mylne J.S., Lister C., Lippman Z., Martienssen R.A. and Dean C. (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427: 164–167.

    Baumbusch L.O., Thorstensen T., Krauss V., Fischer A., Naumann K., Assalkhou R., Schulz I., Reuter G. and Aalen R.B. (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res. 29: 4319-4333.

    Bernier G. and Perilleux C. (2005) A physiological overview of the genetics of flowering time control. Plant Biotechnol. J. 31: 3-16.

    Blazquez M. (2000) Flower development pathways. J. Cell Sci. 113: 3547-3548.

    Carruthers L.M. and Hansen J.C. (2000) The core histone N termini function independently of linker histones during chromatin condensation. J. Biol. Chem. 275: 37285-37290.

    Cheng X., Collins R.E. and Zhang X. (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu. Rev. Biophys. Biomol. Struct. 34: 267-294.

    Dong G., Ma D.P., Li J. (2008) The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis. Biochem. Biophys. Res. Commun. 371: 1-6.

    Doyle J.J. and Doyle J.L. (1987) A rapid isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11-15.

    Finnegan E.J., Kovac K.A., Jaligot E., Sheldon C.C., Peacock W.J. and Dennis E.S. (2005) The downregulation of FLOWERING LOCUS C (FLC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms. Plant J. 44: 420-432.

    Gendall A.R., Levy Y.Y., Wilson A. and Dean C. (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107: 525–535.

    He Y. and Amasino R.M. (2005) Role of chromatin modification in flowering-time
    control. Trends Plant Sci. 10: 30-35.

    He Y., Doyle M.R. and Amasino R.M. (2004) PAF1-complex-mediated histone methylation of FLOWERING LOCUS C chromatin is required for the vernalization-responsive, winter-annual habit in Arabidopsis. Genes Dev. 18: 2774-2784.

    He Y., Michaels S.D. and Amasino R.M. (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302: 1751–1754.

    Humphrey G.W., Wang Y., Russanova V.R., Hirai T., Qin J., Nakatani Y. and Howard B.H. (2001) Stable histone deacetylase complexes distinguished by the presence of SANT domain proteins CoREST/kiaa0071 and Mta-L1. J. Biol. Chem. 276: 6817–6824.

    Izawa T., Takahashiy Y. and Yanoz M. (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr. Opin. Genet. Dev. 6: 113-120.

    Jenuwein T. and Allis C.D. (2001) Translating the histone code. Science 293: 1074-1080.

    Kim S.Y., He Y., Jacob Y., Noh Y. S., Michaels S. and Amasino R. (2005) Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. Plant Cell 17: 3301-3310.

    Koornneef M., Hanhart C.J. and van der Veen J.H. (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229: 57–66.

    Kouzarides T. (2002) Histone methylation in transcriptional control. Curr. Opin. Genet. Dev. 12: 198-209.

    Lee J.H., Hong S.M., Yoo S.J., Park O.K., Lee J.S. and Ahn J.H. (2006) Integration of floral inductive signals by flowering locus T and suppressor of overexpression of Constans 1. Physiol. Plant. 126: 475–483.

    Levy Y.Y. and Dean C. (1998) The transition to flowering. Plant Cell 10: 1973-1989.

    Levy Y.Y., Mesnage S., Mylne J.S., Gendall A.R. and Dean C. (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297: 243–246.

    Manzur K.L., Farooq A., Zeng L., Plotnikova O., Koch A.W., Sachchidanand and Zhou M.M. (2003) A dimeric viral SET domain methyltransferase specific to Lys27 of histone H3. Nat. Struct. Biol. 10: 187–196.

    Marmorstein R. (2003) Structure of SET domain proteins: a new twist on histone methylation. Trends Biochem. Sci. 28: 59-62.

    Martin C. and Zhang Y. (2005) The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6: 838–849.

    Matthews J.M. and Sunde M. (2002) Zinc fingers-folds for many occasions. Intl. Union Biochem. Mol. Biol. Life 54: 351-355.

    Michaels S.D. and Amasino R.M. (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11: 949-956.

    Michaels S.D., and Amasino R.M. (2000) Memories of winter: vernalization and the competence to flower. Plant Cell Environ. 23: 1145–1154.

    Michaels S.D. and Amasino R.M. (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13: 935–941.

    Michaels S.D., Bezerra I.C. and Amasino R.M. (2004) FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis. Proc. Natl. Acad. Sci. USA 101: 3281–3285.

    Ng D.W.K., Wang T., Chandrasekharan M.B., Aramayo R., Kertbundit S. and Hall T.C. (2007) Plant SET domain-containing proteins: Structure, function and regulation. Bioch. et Biophy. Acta 1769: 316–329.

    Noh Y.S. and Amasino R.M. (2003) PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Plant Cell 15: 1671–1682.

    Noh B. and Noh Y.S. (2006) Chromatin-mediated regulation of flowering time in Arabidopsis. Physiol. Plant.126: 484-493.

    O´Neill S.D., Nadeau J.A., Zhang X.S., Bui A.Q. and Halevy A.H. (1993) Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5: 419-432.

    Perry J. and Zhao Y. (2003) The CW domain, a structural module shared amongst vertebrates, vertebrate-infecting parasites and higher plants. Trends Biochem. Sci. 28: 576-580.

    Qian C. and Zhou M.M. (2006) SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cell. Mol. Life Sci. 63: 2755-2763.

    Rondo´n A.G., Gallardo M., Garcı´a-Rubio M. and Aguilera A. (2004) Molecular evidence indicating that the yeast PAF complex is required for transcription elongation. EMBO Rep. 5: 47-53.

    Santos-Rosa H., Schneider R., Bernstein B.E., Karabetsou N., Morillon A., Weise C., Schreiber S.L., Mellor J. and Kouzarides T. (2003) Methylation of histone H3, K4 mediates association of the Isw1p ATPase with chromatin. Mol. Cell 12: 1325–1332.

    Schneider R., Bannister A.J. and Kouzarides T. (2002) Unsafe SETs: histone lysine transferases and cancer. Trends Biochem. Sci. 27: 396-402.

    Sheldon C.C., Rouse D.T., Finnegan E.J., Peacock W.J. and Dennis E.S. (2000) The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. USA 97: 3753-3758.

    Soppe W.J.J., Bentsink L. and Koornneef M. (1999) The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana. Development 126: 4763-4770.

    Springer N.M., Napoli C.A., Selinger D.A., Pandey R., Cone K.C., Chandler V.L., Kaeppler H.F., and Kaeppler S.M. (2003) Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiol.132: 1-19.

    Squazzo S.L., Costa P.J., Lindstrom D.L., Kumer K.E., Simic R., Jennings J.L., Link A.J., Arndt K.M. and Hartzog G.A. (2002) The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. EMBO J. 21: 1764–1774.

    Strahl B.D. and Allis C.D. (2000) The language of covalent histone modifications. Nature 403: 41-45.

    Sung S. and Amasino R.M. (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427: 159–164.

    Tadege M., Sheldon C.C., Helliwel C.A., Upadhyaya N.M., Dennis E.S. and Peacock W. J. (2003) Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnol. J. 1: 361-369.

    Trievel R.C., Beach B.M., Dirk L.M., Houtz R.L. and Hurley J.H. (2002) Structure and catalytic mechanism of a SET domain protein methyltransferase. Cell 111: 91–103.

    Tschiersch B., Hofmann A., Krauss V., Dorn R., Korge G. and Reuter G. (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13: 3822–3831.

    Turner B.M. (2000) Histone acetylation and an epigenetic code. Bioessays 22: 836-845.

    Wilson J., Jing C., Walker P., Martin S., Howell S., Blackburn G., Gamblin S. and Xiao B. (2002) Crystal structure and functional analysis of the histone methyltransferase SET7/9. Cell 111: 105–115.

    Xiao B., Jing C., Wilson J.R., Walker P.A., Vasisht N., Kelly G., Howell S., Taylor I.A., Blackburn G.M. and Gamblin S.J. (2003) Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421: 652–656.

    Xu L., Zhao Z., Dong A., Soubigou-Taconnat L., Renou J.P., Steinmetz A. and Shen W.H. (2008) Di and Tri but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Mol. Cell Biol. 28: 1348-11360.

    Zhang H. and van Nocker S. (2002) The VERNALIZATION INDEPENDENCE 4 gene encodes a novel regulator of FLOWERING LOCUS C. Plant J. 31: 663–673.

    Zhang X., Tamaru H., Khan S.I., Horton J.R., Keefe L.J., Selker E.U. and Cheng X. (2002) Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111: 117-127.

    Zhao Z., Yu Y., Meyer D., Wu C. and Shen W.H. (2005) Prevention of earlyflowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nature Cell Biol. 17: 1256-1261.

    下載圖示 校內:2011-09-09公開
    校外:2013-09-09公開
    QR CODE