| 研究生: |
蕭裕霖 Hsiao, Yu-Lin |
|---|---|
| 論文名稱: |
利用Langmuir-Blodgett技術製備氧化石墨烯單分子膜及其在葡萄糖生物感測器應用之研究 Fabrication of Graphene Oxide Monolayer by Langmuir-Blogett Technique and Its Application on Glucose Biosensor |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 共同指導教授: |
吳昭燕
Wu, Jau-Yann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 石墨烯 、十八烷胺 、Langmuir-Blodgett技術 、葡萄糖氧化酵素 、單分子薄膜 、生物感測器 |
| 外文關鍵詞: | Graphene, octadecylamine, Langmuir-Blodgett techniques, glucose oxidase, monolayer template, biosensor |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以改良的Hummer法來製備氧化石墨烯(Graphene Oxide,GO),並以十八烷胺(octadecylamine, ODA) Langmuir單分子層作為模板,藉由單分子層與GO及葡萄糖氧化酵素(Glucose Oxidase, GOx)的作用力,將水溶液中的GO及GOx吸附至氣/液界面,以製備GO及GOx的單分子膜及Langmuir-Blogett (LB)膜。由單分子層的表面壓-時間吸附曲線(π-t isotherm)及表面壓-分子佔據面積等溫曲線(π-A isotherm)來探討GO/ODA及GOx/ODA混合單分子膜於氣/液界面的行為。並以電子顯微鏡和原子力顯微鏡來觀察LB薄膜的表面構型。接著以紫外光還原含氧官能基形成還原態氧化石墨烯(Reduced Graphene Oxide, rGO)薄膜,之後分別將GO及rGO沉積至白金基板,製備成生物感測器進行電化學分析並探討其對感測效能的影響。由實驗結果發現,藉由ODA吸附溶液中的GO可於氣/液界面上形成GO單分子膜,且其表面覆蓋率及表面型態可藉由表面壓的大小來控制。由電化學實驗發現,經紫外光還原過的rGO,有較佳的電化學活性,且在基板上沉積3層rGO時,對過氧化氫有最佳的感測能力,而其葡萄糖感測器靈敏度可達到5.808 μA/cm2∙mM。
In order to prepare graphene oxide (GO) and glucose oxidase (GOx) monolayer, we functionalize the graphite with oxidize agent by modified Hummer’s method. Moreover octadecylamine (ODA) monolayer was used as a template to adsorb GO and GOx from solution to air/water interface by interactions between the template and GO or GOx. We study the behavior of the GO/ODA and GOx/ODA mixed monolayer at air/water interface by pressure-time (π-t) isotherm and the pressure-area (π-A isotherm) isotherm. The morphology of the GO/ODA LB film was examined using Transmission electron microscope (TEM) and Atomic force microscope (AFM). In order to regain the film conductivity, we expose the GO/ODA LB film under UV light to form Reduced Graphene Oxide (rGO). Then the GO and rGO monolayer were dipped on the platinum for biosensors fabrication to study electrochemical property and to get the sensor sensibility. According to experiment results, GO can be adsorbed by surfactant on air/water interface and form GO monolayer. The surface coverage and morphology of the monolayer on the air/water interface can be controlled by surface pressure. From the electrochemical experiment, rGO which reduced by UV light has better electrochemical activity. It shows the best sensing ability to hydrogen peroxide when dipping 3 layers of rGO on the substrate. Moreover the glucose sensor exhibits the highest sensitivity(5.808 μA/cm2∙mM).
1. 行政院衛生署 國民健康局, 糖尿病防治手冊. (2012).
2. wiki. (2012).
3. M. Robert , Ianniello, M. Alexander, Yacynych, Immobilized enzyme chemically modified electrode as an amperometric sensor. American Chemincal Society 53, 2090 (1981).
4. A. L. P. Crumbliss, S.C. Stonehuerner, J. Tubergen, K.R. Zhao, J. Henkens, R.W., Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng 40, 483 (Aug 5 1992, 1992).
5. T. Laurell, J. Drott, L. Rosengren, K. Lindstrom, Enhanced enzyme activity in silicon integrated enzyme reactors utilizing porous silicon as the coupling matrix. Sensors and Actuators, B: Chemical b31, 161 (1996).
6. H. Q. Ansari S. A. , Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol Adv 30, 512 (May, 2012).
7. M.I.A. Ahuja T., Kumar D., Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28, 791 (Feb, 2007).
8. S. Arya S.K., P.R.,Singh S.P.,Kaneto K.,Pandey M.K.,Datta M., Malhotra B.D., Poly-(3-hexylthiophene) self-assembled monolayer based cholesterol biosensor using surface plasmon resonance technique. Biosens Bioelectron 22, 2516 (May 15, 2007).
9. Z. P. Guan H., Zhou X.,He Z., Sensitive and selective detection of aspartic acid and glutamic acid based on polythiophene-gold nanoparticles composite. Talanta 77, 319 (Oct 19, 2008).
10. D.J. Kim Yuna, Kim Jeonghun,Yang Sang Yoon,Malliaras George G.,Ober Christopher K., E. Kim, A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer. Japanese Journal of Applied Physics 49, 01AE10 (2010).
11. Y. H. Kim, S. K. Park, D. G. Moon, W. K. Kim, J. I. Han, Organic Thin Film Transistor-Driven Liquid Crystal Displays on Flexible Polymer Substrate. Japanese Journal of Applied Physics 43, 3605 (2004).
12. Sungjin Park1, Rodney S. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotechnology, 4, 217 - 224 (2009).
13. 許清曉, 常用臨床檢驗手冊. (藝軒圖書, 2001).
14. 梅約醫學中心, Mayo Clinic on Managing Diabetes— 糖尿病. (天下生活出版社, 2001).
15. 糖尿病關懷基金會, 糖尿病迷思解惑Q & A. (健康文化發行, 2007).
16. 賴育民, 糖尿病完全百科:全方位治療指南. (晨星出版社, 2007).
17. D. Diamond, Chemical Analysis. ( New York, 1998), vol. 1, pp. 150.
18. 林正立, 溶膠-凝膠修飾電極和電流式乳酸生物感測器. (國立中正大學化學研究所, 2005).
19. A. Chaubey, B. D. Malhotra, Mediated biosensors. Biosensors & Bioelectronics 17, 441 (2002).
20. S.P. Mohanty, E. Kougianos, paper presented at the IEEE Potentials (2006).
21. 劉英俊, 酵素工程. (中央圖書出版社, 1995).
22. 洪爭坊、郭肇凱、張正英, in 台中區農情月刊. (2007), vol. 84.
23. 呂鋒洲、林仁混, 基礎酵素學. (聯經出版社, 1991).
24. J. Li, V. Rosilio, M.-M. Boissonnade, A. Baszkin, Adsorption of glucose oxidase into lipid monolayers: effect of a lipid headgroup charge. Colloids and Surfaces B: Biointerfaces 29, 13 (2003).
25. S. J. W. Dong, B. X.; Liu, B. F., Amperometric glucose sensor with ferrocene as an electron transfer mediator. Biosens. Bioelectron 7, 215 (1991).
26. M. E. G. a. C. M. A. Brett, Development of a Carbon Film Electrode Ferrocene-Mediated Glucose Biosensor. Analytical Letters 38, 907 (2005).
27. T. S. T. P. C. Nien, and K. C. Ho, Amperometric Glucose Biosensor based on Entrapment of Glucose Oxidase in a Poly(3,4-ethylenedioxythiophene) Film. Electroanalysis 18, 1408 (2006)
28. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene Based Electrochemical Sensors and Biosensors:A Review, Electroanalysis 22, 1027 (2010).
29. B. D. Malhotra, A. Chaubey, S. P. Singh, Prospects of conducting polymers in biosensors. Anal Chim Acta 578, 59 (Sep 18, 2006).
30. Insoluble Mnonlayers at Liquid-Gas Interface, Insoluble Mnonlayers at Liquid-Gas Interface. (Wiley Press, 1966), pp. Chapter 6.
31. G. L. Gaines, On the history of Langmuir-Blodgett films. Thin Solid Films 99, R9 (1983).
32. D. Myers, Surface, Interfaces, and Colloids: Priciples and Applications. (VCH, 1999).
33. G. Roberts, Langmuir-Blodgett Films. Plenum, (1990).
34. R. D. J. Neuman, Colloid Interface Sci 53, 161 (1975).
35. W. S. Ester Xing, Y.Guo,D.Lu and T.S.Xi, Mechanism of Iron Inhibition by stearic-acid Langmuir-Blodgett Monolayers Wettability,Surface-Morphology,and Stability of Long-Chain. Corrosion 51, 45 (1995).
36. M. Leonard, R. M. Morelis, P. R. Coulet, Linked influence of pH and cations on fatty-acid monolayer integrity related to high-quality Langmuir-Blodgett films. Thin Solid Films 260, 227 (1995).
37. Angelova, A. Penacorada, F. Stiller, B. Zetzsche, T. Ionov, R. Kamusewitz, H. Brehmer, L., Surface Morphology, and Stability of Long-Chain Ester Multilayers Obtained by Different Langmuir-Blodgett Deposition Types. The Journal of Physical Chemistry 98, 6790 (1994/07/01, 1994).
38. K.-H. Wang, M.-J. Syu, C.-H. Chang, Y.-L. Lee, Immobilization of glucose oxidase by Langmuir–Blodgett technique for fabrication of glucose biosensors: Headgroup effects of template monolayers. Sensors and Actuators B: Chemical 164, 29 (2012).
39. G. L. Gaines, On the history of Langmuir-Blodgett films. Thin Solid Films 99, R9 (1983).
40. Richard L. McCreery, “Advanced Carbon Electrode Materials for Molecular Electrochemistry,” Chem. Rev., 108, 2646–2687 (2008).
41. Dale A. C. Brownson, Dimitrios K. Kampouris and Craig E. Banks, “Graphene electrochemistry: fundamental concepts through to prominent applications,” Chem. Soc. Rev., 41, 6944–6976 (2012).
42. Sungjin Park1, Rodney S. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotechnology, 4, 217 - 224 (2009).
43. Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Ce´cile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, “Electronic confinement and coherence in patterned epitaxial grapheme,” Science, 312, 1191 (2006).
44. Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on Copper foils,” Science, 324, 1312 (2009).
45. Hummers, W. S., Offeman, R. E., “Preparation of Graphitic Oxide,” J. Am. Chem. Soc., 80, 1339 (1958).
46. Hontoria-Lucas, C., Lopez-Peinado, A. J., Lopez-Gonzalez, J. de D., Rojas-Cervantes, M. L. and Martin-Aranda, R. M., “Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization” Carbon, 33,1585-1592 (1995).
47. Yanyu Liang, Dongqing Wu, Xinliang Feng and Klaus Müllen, “Dispersion of graphene sheets in organic solvent supported by ionic interaction,” Adv. Mater., 21, 1679-1683 (2009).
48. Chao Zhang, Weng Weei Tjiu, Wei Fan, Shu Huang and Tianxi Liu, “A novel approach for transferring water-dispersible grapheme nanosheets into organic media,” J. Am. Chem. Soc., 22, 11748-11754 (2012).
49. Qingbin Zheng, Wai Hing Ip, Xiuyi Lin, Nariman Yousefi, Kan Kan Yeung, Zhigang Li, and Jang-Kyo Kim, “Transparent conductive films consisting of ultralarge grapheme sheets produced by Langmuir-Blodgett assembly,” J. Am. Chem. Soc., 5, 6039-6051 (2011).
50. Youwei Zhang, Hui-Ling Ma, Qilu Zhang, Jing Peng, Jiuqiang Li, Maolin Zhai and Zhong-Zhen Yu, “Facile synthesis of well-dispersed graphene by γ-ray induced reduction of graphene oxide,” J. Mater. Chem., 22, 13064-13069 (2012).
51. Kai Wang, Tao Feng, Min Qian, Hui Ding, Yiwei Chen, Zhuo Sun, “The field emission of vacuum filtered graphene films reduced by microwave,” Applied Surface Science, 257, 5808–5812 (2011).
52. Yasumichi Matsumoto, Michio Koinuma, Su Yeon Kim, Yusuke Watanabe, Takaaki Taniguchi, Kazuto Hatakeyama, Hikaru Tateishi and Shintaro Ida, “Simple Photoreduction of Graphene Oxide Nanosheet under Mild Conditions,” ACS Applied Materials & Interfaces, 2(12), 3461–3466 (2010).
53. Sergey Dubin, Scott Gilje, Kan Wang, Vincent C. Tung, Kitty Cha, Anthony S. Hall, Jabari Farrar, Rupal Varshneya, Yang Yang and Richard B. Kaner, “A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents,” ACS Nano, 4(7), 3845–3852 (2010).
54. Sasha Stankovich, Dmitriy A. Dikin, Richard D. Piner, Kevin A. Kohlhaas, Alfred Kleinhammes, Yuanyuan Jia, Yue Wu, SonBinh T. Nguyen and Rodney S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, 45, 1558–1565 (2007).
55. 陳俊維,李紹先, “石墨烯氧化物的可調變螢光光譜之研究” 自然科學簡訊第二十四卷第四期 (2012).
56. Laura J. Cote, Franklin Kim and Jiaxing Huang, “Langmuir-Blodgett Assembly of Graphite Oxide Single Layers,” J. Am. Chem. Soc., 131, 1043–1049 (2009).
57. Laura J. Cote, Jaemyung Kim, Vincent C. Tung, Jiayan Luo, Franklin Kim and Jiaxing Huang, “Graphene oxide as surfactant sheets,” Pure Appl. Chem., 83(1), pp. 95–110 (2011).
58. Sergey Dubin, Scott Gilje, Kan Wang, Vincent C. Tung, Kitty Cha, Anthony S. Hall, Jabari Farrar, Rupal Varshneya, Yang Yang and Richard B. Kaner, “Highly-efficient fabrication of nanoscolls from functionalized graphene oxide by Langmuir-Blodgett method,” Carbon, 48, 4475-4482 (2010).
59. Re´gis Y. N. Gengler, Alina Veligura, Veligura, Apostolos Enotiadis, Evmorfia K. Diamanti, Dimitrios Gournis, Csaba Jo´zsa, Bart J. van Wees, and Petra Rudolf, “Large-Yield Preparation of High-Electronic-Quality Graphene by a Langmuir–Schaefer Approach,” small, 1, 35-39 (2010)
60. E. Casero, A.M. Parra-Alfambra, M.D. Petit-Domínguez, F. Pariente, E. Lorenzo, C. Alonso, “Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS),” Electrochemistry Communications, 20, 63–66 (2012).
61. Yasumichi Matsumoto, Michio Koinuma, Su Yeon Kim, Yusuke Watanabe, Takaaki Taniguchi, Kazuto Hatakeyama, Hikaru Tateishi and Shintaro Ida, “Simple Photoreduction of Graphene Oxide Nanosheet under Mild Conditions,” ACS Applied Materials & Interfaces, 2(12), 3461–3466 (2010).
62. 王可瑄, 葡萄糖氧化酵素在氣/液界面的吸附行為及其對葡萄糖生物感測器特性影響的研究 , 國立成功大學 (2012).