簡易檢索 / 詳目顯示

研究生: 林學治
Lin, Syue-Jhih
論文名稱: 建立老年人下肢有限元模型評估汽車與行人碰撞
Development of an elderly human lower limb finite element model to evaluate car interactions with pedestrian
指導教授: 黃才炯
Huang, T.J.
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 116
中文關鍵詞: 行人下肢行人傷害老年人生物擬真性汽車碰撞意外事故
外文關鍵詞: pedestrian lower limbs, pedestrian injuries, the elderly, Biofidelity, car crash accident
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    台灣因人口密集且大都集中於都會區,汽車在轉彎時容易撞到過馬路的行人;在車禍報告中,可以發現到65歲(含)佔全體受傷人數約33.5%。而汽車與行人意外事故中,其常見的傷害機制為下肢骨折或膝關節軟組織的損傷,此外,由於骨礦物質密度的降低(BMD)和其他因素導致身體的耐受力下降,由相同的衝擊強度引起的傷害水平在老年人中往往高於成年人,故不可忽略其嚴重性。
    目前評斷汽車對行人的傷害有歐洲促進汽車安全委員會(EEVC)所制定的次系統測試方法。測試方法是用下肢衝擊器去撞擊汽車保險桿並收集相關數據以進行分析,但是下肢衝擊器的規範主要關注在膝蓋傷害,對於最易發生的骨折只能利用加速度做為評估,並且沒有考慮年齡增加對肌肉,骨骼、韌帶的影響。如果要獲得真實的人體碰撞反映,只能透過自願者或是電腦模擬。本研究使用有限元方法或稱有限元素方法,建立老年人下肢電腦模型,利用老年人下肢模型模擬與汽車發生碰撞,並針對所受到的傷害進行分析。比較EEVC下肢衝擊器與模型的結果,再提供建議。
    第一階段中使用Hypermesh將下肢骨頭與肌肉模型進行切割並網格化,並參考解剖學將模型進行組合。第二階段則是蒐集老年人生物材料性質文獻並進行模型的驗證,首先對下肢的股骨、脛骨與腓骨進行靜態三點彎曲驗證,再對大腿和小腿肌肉進行側向彎曲驗證。再對整體下肢做彎曲與剪切驗證。確保模型有良好的生物擬真性,符合老年人的生物特性。第三階段使用汽車保險桿撞擊老年人下肢模型模擬事故發生,並評估老年人下肢於汽車事故中受傷的程度。最後發現老年人下肢骨頭在汽車碰撞中所承受的衝擊力會明顯大於年輕人,下肢骨頭更容易斷裂,並且發現汽車雖然通過EEVC測試,但是仍可能對老年行人造成傷害。

    In today's automotive industry, there are sub-system test methods developed by the European Enhanced Vehicle-Safety Committee for judging automobile injuries to pedestrians. The test method is to use a lower extremity impactor to impact the car bumper and collect relevant data for analysis, but the specification of the lower extremity impactor mainly focuses on knee injuries. For the most prone to fractures, only acceleration can be used as an assessment, and it is not considered about the effect of increasing age on muscles, bones and ligaments. If you want to get a real reflection of human collision, you can only use volunteers or computer simulations.
    In this study, the finite element method was used to build a computer model of the lower limbs of the elderly. In the first stage, Hypermesh was used to cut and mesh the lower limb bone and muscle models. In the second stage, the model is verified. First, the three-point bending of the femur, tibia and fibula of the lower extremity is verified, and then the dynamic three-point bending of the thigh and calf muscles is verified. Then verify the bending and shearing of the whole lower limb. In the third stage, a car bumper was used to simulate the occurrence of an elderly lower extremity model, and the degree of injury of the elderly lower extremity in an automobile accident was evaluated. Finally, it was found that the bones of the lower limbs of the elderly in a car collision will be significantly greater than the younger ones, and they are more likely to break.

    目錄 摘要 I 誌謝 VIII 表目錄 XII 圖目錄 XIV 符號說明 XVIII 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3 論文架構 3 第二章 研究背景 5 2.1行人道路事故相關統計 5 2.1.1台灣人口老化程度 5 2.1.2道路事故統計 7 2.1.3行人意外事故傷害統計分析 8 2.1.4傷害等級分類 11 2.2人體下肢介紹 12 2.3 道路行人下肢傷害之探討與評估準則 25 2.3.1行人下肢碰撞傷害 25 2.3.2傷害程度評估的準則 27 2.4人體碰撞測試方法 28 2.5 電腦數值模擬與理論基礎 33 2.6真實行人下肢有限元模型 34 第三章 老年人下肢有限元模型的建立 40 3.1 老年人下肢有限元模型的設計流程 40 3.2 老年人下肢有限元模型的建立 41 3.2.1 模型網格化 41 3.2.2 膝蓋韌帶模型 45 3.2.3 踝關節模型 48 3.2.4 材料性質、斷面性質與材料參數設定 49 3.3 大體實驗規範 52 3.3.1 骨頭靜態三點彎曲測試方法 52 3.3.2 大腿和小腿側向彎曲測試方法與驗證區間 55 3.3.3 整體下肢撞擊測試方法與驗證區間 57 第四章 生物擬真性驗證與碰撞模擬 63 4.1 下肢骨頭的靜態三點彎曲測試 63 4.1.1股骨靜態三點彎曲測試 64 4.1.2脛骨靜態三點彎曲測試 65 4.1.3腓骨靜態三點彎曲測試 66 4.2 大腿和小腿側向彎曲測試 69 4.2.1大腿側向彎曲測試 70 4.2.2小腿側向彎曲測試 74 4.3 整體下肢撞擊測試 78 4.3.1 彎曲測試 78 4.3.2 剪切測試 85 4.4 實車碰撞模擬與分析 91 4.4.1 保險桿模型 92 4.4.2 老年人下肢模型模擬條件設定 94 4.4.3 老年人下肢模型碰撞模擬結果 95 4.4.4 小結 107 第五章 論與建議 108 5.1 結論 108 5.2 建議與未來發展 109 參考文獻 110

    Been, B., Burleigh, M., Konosu, A., Issiki, T., Takahashi, Y., and Suzuki, H., “Development of a Biofidelic Flexible Pedestrian Legform Impactor Type GTR Prototype Part 2: Technical Details,” 21th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 146, 2009.
    Chang Qi., Sun, Y., Yang, S., and Lu, Z.-H., “Multi-Objective Optimization Design of Hybrid Material Bumper for Pedestrian Protection and Crashworthiness Design,” SAE Technical Paper, 2020.
    Crandall, J. R., Petit, P., Portier, L., Hall, G. W., Bass, C. R., Klopp, G. S., Hurwitz, S., Pilkey, W. D., Trosseille, X., Tarrière, C., and Lassau, J-P., “Biomechanical Response and Physical Properties of the Leg, Foot, and Ankle,” Society of Automotive Engineers (SAE), Paper No. 962424, 1996.
    Crandall, J., Bhalla, K., and Madeley, N., “Designing Road Vehicles for Pedestrian Protection,” British Medical Journal, Vol. 324, pp. 1145-1148, 2002.
    Croop, B. and Lobo, H., “Selecting Material Models for the Simulation of Foams in LS-DYNA,” 7th European LS-DYNA Conference, 2009.
    EEVC, “EEVC Working Group 10 Report - Proposals for Methods to Evaluate Pedestrian Protection for Passenger Cars,” European Experimental Vehicles Committee, 1994.
    EEVC, “EEVC Working Group 12 Report – Report on THOR-Lx Design and Performance,” European Enhanced Vehicle-Safety Committee, 2009.
    EEVC, “EEVC Working Group 17 Report - Improve Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars,” European Enhanced Vehicle-Safety Committee, 1998.
    Fressmann, D., “Vehicle Safety using the THUMS Human Model,” 11th German LS-DYNA Form 2012, Ulm, Germany, 2012
    Gennarelli, T. and Wodzin, E., “AIS 2005: A contemporary injury scale,”
    International Journal of the Care of the Injured (Injury), Vol. 37, pp. 1083-1091,
    2006
    Ivarsson, J., Lessley, D., Kerrigan., Bhalla, K., Bose, D., Crandall, J., and Kent, R.,
    “Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities,” 2004 International IRCOBI Conference on the Biomechanics of Impact, pp. 179-191, 2004.
    Jing Huang and Yongcheng Long., “A Study on the effect of age on the injury criteria and modeling of lower extremity long bone,” Eighth International Conference on Measuring Technology and Mechatronics Automation,2016.
    Kajzer, J., Schroeder, G., Ishikawa, H., and Matsui, Y., “Shearing and Bending Effects at the Knee Joint at High Speed Lateral Loading,” 41th Stapp Car Crash Conference, Paper No. 973326, 1997.
    Kajzer, J., Schroeder, G., Ishikawa, H., and Matsui, Y., “Shearing and Bending Effects at the Knee Joint at Low Speed Lateral Loading ,” SAE Technical Paper, 1999-01-0712, 1999.
    Kajzer, J., “Impact Biomechanics of Knee Injuries,” Doctoral Thesis, Department of Injury Prevention, Chalmers University of Technology, Göteborg, Sweden, 1991.
    Kajzer, J., Cavallero, C., Bonnoit, J., Morjane, A., and Ghanouchi, S., “Response of the Knee Joint in Lateral Impact-Effect of Bending Loads,” 1993 International IRCOBI Conference on the Biomechanics of Impact, pp. 105-116, 1993.
    Kerrigan, J., Bhalla, K., Madeley, N., Funk, J., Bose, D., and Crandall, J.,
    “Experiment for Establishing Pedestrian-Impact Lower Limb Injury Criteria,”
    Society of Automotive Engineers, Paper No. 2003-01-0895, 2003.
    Kerrigan, J., Drinkwater, D., Kam, C., Murphy, D., Ivarsson, B., Crandall, J.,and
    Patrie, J., “Tolerance of the Human Leg and Thigh in Dynamic Latero-medial Bending,” International Journal of Crashworthiness, Vol.9, No. 6, pp. 607-623, 2004.
    Konosu, A., “Information on the Flexible Pedestrian Legform Impactor GT ALPHA,” Flex-PLI Technical Evaluation Group Technical Report, Paper No. TEG-022, 2006.
    Krone, R. and Schuster, P., “An Investigation on the Importance of Material Anisotropy in Finite-Element Modeling of the Human Femur,” SAE Technical Paper, Paper No. 2006-01-0064, 2006.
    LS-DYNA Support, “Energy Data,”
    http://www.dynasupport.com/tutorial/ls-dyna-users-guide/energy data/?
    searchterm=energy%20data ( 2010/10/13 assessed).
    Manoli, A., Prasad, P., and Levine, R. S., “Foot and Ankle Severity Scale (FASS),” Foot & Ankle International, 1997.
    Marieb, Elaine Nicpon, and Jon, Mallatt. “Human Anatomy,” Cummings Publishing Company, 2002.
    Martin, J. L., Lardy, A., Laumon, B., “Pedestrian Injury Patterns According to Car and Casualty Characteristics in France” 55th AAAM Annual Conference Annals of Advances in Automotive Medicine, Vol. 55, 2011
    Marzougui, D., D. Brown, C.K. Park, C.D. Kan, K.S. Opiela, “Development & Validation of a Finite Element Model for a Mid‐Sized Passenger Sedan,” presented at the 13th International LS-DYNA Users Conference, USA, June 8–10, 2014.

    Mather B S. “The symmetry of the mechanical properties of the human femur,” [J]. Journal of Surgical Research, 1967, 7(5):222–225.
    Matsui, Y., Takagi, S., Tanaka, Y., Hosokawa, N., Itoh, F., Nakasato, H., Watanabe, N., and Yonezawa, N., “Characteristics of the TRL Pedestrian Legform and the Flexible Pedestrian Legform Impactors in Car-front Impact Tests,” 21th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 206, 2009.
    Matsui, Y., “Biofidelity of TRL Legform Impactor and Injury Tolerance of the Human Leg in Lateral Impact,” Society of Automotive Engineers, Paper No. 2001-22-0023, 2001.
    Mccalden R W, Mcgeough J A, Barker M B, et al. “Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure,” Journal of Bone & Joint Surgery American Volume, 75(8):1193-1205, 1993.
    Mertz, H. J., “Accidental Injury: Biomechanics and Prevention,” edited by A. M. Nahum and J. W. Melvin, Springer-Verlag, New York, 1993.
    Mizuno, Y., “IHRA– Summary of IHRA Pedestrian Safety Working Group Activities ,” 18th International Technical Conference on the Enhanced
    Safety of Vehicles (ESV), Paper No. 580, 2003.
    Morgan, R., Marcus, J., and Eppinger, R., “Correlation of Side Impact Dummy/Cadaver Tests,” 25th Stapp Car Crash Conference, Paper No. 811008, 1981.
    Nyquist, G. W., “Injury Tolerance Characteristics of the Adult Human Lower Extremities Under Static and Dynamic Loading,” Society of Automotive Engineers (SAE), Paper No. 861925, 1986.
    Park, J. J., Haddadin, S., Song, J. B., & Albu-Schaffer, A., “Designing optimally safe robot surface properties for minimizing the stress characteristics of human-robot collisions,” 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 5413-5420, 2011.
    Philippens, M., Cappon, H., Ratingen, M., and Wismans, J., “Comparison of the Rear Impact Biofidelity of BioRID II and RID2,” 46th Stapp Car Crash Conference, Paper No. 2002-22-0023, 2002.
    Race,Amos and A. Amis,Andrew., “The mechanical properties of the two bundles of the human posterior cruciate ligament,” Bimwhanics Vol. 27. No. I. pp 13 24, 1994.
    Reilly D T. “The elastic modulus for bone,” [J]. Journal of Biomechanics, 1974, 7(3):271–272, IN9–IN12, 273–275.
    Robbins, D. H., “Anthropometric specifications for mid sized male dummy, volume 2,” UMTRI , Report No. UMTRI-83-53-2, 1983.
    Ruff C B, Hayes W C. “Sex differences in age-related remodeling of the femur and tibia,” [J]. Journal of Orthopaedic Research Official Publication of the Orthopaedic Research Society, 1988, 6(6):886–896.
    Schuster, Peter J., and Clifford C. Chou., “Development and validation of a pedestrian lower limb non-linear 3-D finite element model,” SAE Technical Paper, No. 2000-01-SC21, 2000.
    Takahashi, Yukou, et al., “Development and validation of the finite element model for the human lower limb of pedestrians,” SAE Technical Paper, Paper No. 2000-01-SC22, 2000.
    Untaroiu C, Darvish K, Crandall J, et al. “A finite element model of the lower extremity for simulating pedestrian impacts,” Stapp Car Crash Journal, 2005, 49:157-81.
    William T. Wilson., “Comparative Analysis of the Structural Properties of the Collateral Ligaments of the Human Knee,” Journal of Orthopaedic & Sports Physical Therapy®, 2011.
    Wisch, M., Lerner, M., Vukovic, E., Hynd, D., Fiorentino, A., Fornells, A.,
    “Injury Patterns of Older Car Occupants, Older Pedestrians or Cyclists in Road Traffic Crashes with Passenger Cars in Europe – Results from SENIORS,” IRCOBI Conference, 2017.
    Savio L-Y ,Woo., “Tensile properties of the human femur-anterior cruciate ligament-tibia complex,” The American Journal of Sports Medicine, Vol. 19, No.3, 1991.
    Xin Jin, Anil Kalra, Anand Hammad., “Development and Validation of Whole‐Body Finite Element Occupant and Pedestrian Models of a 70‐Year‐Old Female,” IRCOBI conference 2018.
    Yamada H, Evans F G. “Strength of biological materials,” Baltimore, MD: Williams & Wilkens, 1970.
    Yang, J., “Review of Injury Biomechanics in Car-Pedestrian Collisions,”
    Crash Safety Division, Machine and Vehicle Systems, Chalmers
    University of Technology, 2002.
    王梅馨,具可曲性結構行人下肢衝擊器之設計與驗證,國立成功大學機械工程學系研究所學位論文,台南,台灣,2011。
    內政部戶政司統計處,107年第15週內政統計通報,台北,台灣,2018。
    交通部運輸研究所,106年交通安全統計報表,台北,台灣,2017。
    俞泰華,行人與機車騎士下肢碰撞模擬及傷害評估,國立成功大學機械工程學系研究所學位論文,台南,台灣,2012。
    陳金山,徐淑媛編譯(2008),Netter’s 人體解剖學圖譜,合計圖書出版社,台北,台灣。
    鄭維仁,真實行人下肢有限元素之設計、驗證與碰撞傷害評估,國立成功大學機械工程學系研究所學位論文,台南,台灣,2012。
    鄭歷菁,陳健行,賴昆城,鐘敦輝編譯(2008),醫用解剖學,合計圖書出版社,台北,台灣。
    蕭靖宜,行人下肢保護吸能性汽車保險桿分析與設計,國立成功大學機械工程
    研究所學位論文,台南,台灣,2010。
    168交通安全入口網
    https://168.motc.gov.tw/,2019。

    下載圖示 校內:2024-08-24公開
    校外:2024-08-24公開
    QR CODE