簡易檢索 / 詳目顯示

研究生: 陳泰翔
Chen, Tai-Hsiang
論文名稱: 以滲透蒸發或薄膜蒸餾系統進行廢棄切削油脫水處理
Dehydration of Spent Cutting Oil by System of Pervaporation or Membrane Distillation
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 125
中文關鍵詞: 滲透蒸發薄膜蒸餾二乙二醇除水
外文關鍵詞: Pervaporation, Membrane distillation, Diethylene glycol, Dehydration
相關次數: 點閱:121下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用滲透蒸發(PV)與薄膜蒸餾(MD)兩種薄膜系統去除廢棄切削油溶液中多餘的水分使其含水率降到5 wt%以下而能回收再利用。
    廢棄切削油溶液先經過NMR、TGA與Karl Fischer水分分析儀鑑定其性質並確定主成分為二乙二醇(DEG)且為多成分的混合物。PV部分先做薄膜篩選並確定所使用的薄膜為PVA/PAN且以馬來酸酐交聯的複合膜,之後在溫度探討中確定最佳操作溫度為85°C,最後做實廠廢棄切削油測試,其結果與85°C的模擬廢水相似,進料端含水率Xwater可降到0.58 wt.%。
    本實驗使用的MD系統為真空式MD(VMD)在經過溫度、攪拌轉速與滲透端壓力的探討後得到最佳操作條件為90°C、1500 rpm及45 Torr,此時Xwater為2.3 wt.%。對於最佳條件下的第一個樣品而言,VMD的滲透液流通量與分離係數分別比PV的大約20倍與50倍。VMD只需40分鐘即達平衡,然而PV最終的Xwater比MD的小,因此在去除廢棄切削油的水分方面應該先用VMD處理後再交給PV處理。

    This study is using pervaporation (PV) and membrane distillation (MD) to dehydrate the spent cutting oil and make it recycled (water content ≦ 5 wt%). The spent cutting oil is analyzed by NMR, TGA and Karl Fischer titrator and is obtained that diethylene glycol (DEG) is the major component and the spent cutting oil is a multicomponent mixture. In PV experiment, the polyvinyl alcohol (PVA)/polyacrylonitrile (PAN) hybrid membrane crosslinked by maleic anhydride is chosen. After the temperature experiment, 85°C is chosen as the optimal temperature. The results of the real spent cutting oil experiment are almost the same as the same as that in the synthetic spent cutting oil experiment at 85°C and the final water content in the feed solution (Xwater) is 0.58 wt.%. The MD system used in this study is vacumm MD (VMD). The effects of temperature, stirring rate and pressure of permeate are studied and the optimal operating condition is 90°C, 1500 rpm and 45 Torr. The final Xwater is 2.3 wt.% at the optimal operating condition. For the first sample at the optimal condition, the flux and separation factor of VMD are larger than those of PV about 20 times and 50 times. It only costs 40 minutes making VMD system become stable. However the final Xwater of PV is lower than that of VMD. Therefore, it is better that the spent cutting oil is treated by PV after treated by VMD.

    目錄 摘要 I 英文延伸摘要 II 誌謝 VII 目錄 IX 表目錄 XIII 圖目錄 XIV 符號與縮寫 XVIII 第一章 緒論 1 第二章 文獻回顧 3 2.1. 薄膜技術簡介 3 2.2. 薄膜的分類與組件 3 2.3. 薄膜技術沿革[2] 7 2.4. 薄膜系統常遇問題[1] 12 2.4.1. 孔洞堵塞 12 2.4.2. 薄膜表面性質改變 13 2.4.3. 濃度極化現象(concentration polarization)[6, 7] 14 2.5. PV系統介紹 16 2.5.1. 原理 17 2.5.2. 發展 19 2.5.3. 應用 20 2.6. MD系統簡介 27 2.6.1. 原理 28 2.6.2. 發展 30 2.6.3. 應用 32 第三章 實驗方法 45 3.1. 實驗藥品 45 3.2. 實驗設備 46 3.3. 實驗步驟 48 3.3.1. 廢棄切削油性質檢測 51 3.3.2. 製作PV薄膜 51 3.3.3. PV實驗操作 55 3.3.4. 薄膜蒸餾 58 3.4. 分析儀器 61 3.4.1. 核磁共振光譜儀(NMR) 61 3.4.2. 熱重分析儀(TGA) 64 3.4.3. 水分分析儀 65 3.4.4. TOC分析儀 66 第四章 結果與討論 68 4.1. 廢棄切削油性質 68 4.2. PV薄膜製作 70 4.2.1. Chitosan與SPEEK混摻 70 4.2.2. 改質chitosan 72 4.2.3. 改質PVA 77 4.3. PV除水實驗 79 4.3.1. 溫度影響效應 80 4.3.2. 實廠樣品測試 84 4.4. VMD除水實驗 88 4.4.1. 溫度影響效應 88 4.4.2. 攪拌轉速影響效應 92 4.4.3. 滲透端壓力影響效應 94 4.5. 整合性系統評估 96 4.5.1. PV與VMD之比較 96 4.5.2. 系統應用可能性 98 第五章 結論 101 參考文獻 103 附錄一 112 附錄二 去除水中硼離子 114 簡介 114 目前成果 114 附錄三 水溶性聚氨酯洗槽水的水回收 118 簡介 118 目前成果 118 附錄四 聚乳酸的寡聚物製備 122 簡介 122 目前成果 123

    [1] 楊座圖, 膜科學技術-過程與原理, 華東理工大學出版社, 2009
    [2] 徐又一, 徐志康, 高分子膜材料, 化學工業出版社, 2005
    [3] 吳大猷, 吳俊哲, UF薄膜系統應用於高濁度原水處理之可行性研究, 環境工程與科學學系, 逢甲大學, 2011
    [4] Kemperman AJB, Handbook on Bipolar Membrane Technology, Twente University Press, 2000
    [5] Mulder M, Basic Principles of Membranes Technology, Kluwer Academic Publishers, 1991
    [6] Chen JC, Li QL, Elimelech M. In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. Adv. Colloid Interface Sci. 2004; 107: 83-108
    [7] Martinez-Diez L, Vazquez-Gonzalez MI. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. J. Membr. Sci. 1999; 156: 265-73
    [8] Shaban HI. Pervaporation separation of water from organic mixtures. Sep. Purif. Technol. 1997; 11: 119-26
    [9] Shao P, Huang RYM. Polymeric membrane pervaporation. J. Membr. Sci. 2007; 287: 162-79
    [10] Feng XS, Huang RYM. Liquid separation by membrane pervaporation: A review. Industrial & Engineering Chemistry Research 1997; 36: 1048-66
    [11] Heintz A, Stephan W. A Generalized Solution Diffusion-Model of The Pervaporation Process Through Composite Membranes. 2. Concentration Polarization, Coupled Diffusion and The Influence of The Porous Support Layer. J. Membr. Sci. 1994; 89: 153-69
    [12] Wijmans JG, Baker RW. The Solution-Difffusion Model - A Review. J. Membr. Sci. 1995; 107: 1-21
    [13] Okada T, Matsuura T. A New Transport Model for Pervaporation. J. Membr. Sci. 1991; 59: 133-50
    [14] Gierke TD, Munn GE, Wilson FC. The Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide-Angle and Small-Angle X-Ray Studies. Journal of Polymer Science Part B-Polymer Physics 1981; 19: 1687-704
    [15] Yoshikawa M, Yokoi H, Sanui K, Ogata N, Shimidzu T. Polymer Membrane as A Reaction Field. 2. Effect of Membrane Environment on Permselectivity for Water Ethanol Binary-Mixtures. Polym. J. 1984; 16: 653-6
    [16] Yoshikawa M, Ogata N, Shimidzu T. Polymer Membrane as A Reaction Field. 3. Effect of Membrane Polarity on Selective Separation of a Water Ethanol Binary Mixture Through Synthetic-Polymer Membrane. J. Membr. Sci. 1986; 26: 107-13
    [17] Li BB, Xu ZL, Qusay FA, Li R. Chitosan-poly (vinyl alcohol)/poly (acrylonitrile) (CS-PVA/PAN) composite pervaporation membranes for the separation of ethanol-water solutions. Desalination 2006; 193: 171-81
    [18] Peters TA, Benes NE, Keurentjes JTF. Hybrid ceramic-supported thin PVA pervaporation membranes: Long-term performance and thermal stability in the dehydration of alcohols. J. Membr. Sci. 2008; 311: 7-11
    [19] Shameli A, Ameri E. Synthesis of cross-linked PVA membranes embedded with multi-wall carbon nanotubes and their application to esterification of acetic acid with methanol. Chem. Eng. J. 2017; 309: 381-96
    [20] Sun HL, Lu LY, Chen X, Jiang ZY. Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration of ethanol. Appl. Surf. Sci. 2008; 254: 5367-74
    [21] Sajjan AM, Premakshi HG, Kariduraganavar MY. Synthesis and characterization of GTMAC grafted chitosan membranes for the dehydration of low water content isopropanol by pervaporation. Journal of Industrial and Engineering Chemistry 2015; 25: 151-61
    [22] Kober PA. Pervaporation, perstillation and percrystallization. J. Am. Chem. Soc. 1917; 39: 944-8
    [23] Fraber L. Applications of Pervaporation. Science 1935; 82: 158
    [24] Heisler EG, Hunter AS, Siciliano J, Treadway RH. Solute and Temperature Effects in The Pervaporation of Aqueous Alcoholic Solutions. Science 1956; 124: 77-9
    [25] Li SY, Srivastava R, Parnas RS. Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. J. Membr. Sci. 2010; 363: 287-94
    [26] Chen T-C, Chen T-H, Lyu J-Y, Huang Y-H. The dehydration and recovery of waste
    d TFP solution using the pervaporation process. Sustain. Environ. Res. 2013; 23: 325-31
    [27] Chen T-C, Chen T-H, Wu R-Y, Huang Y-H. The novel of high efficiency recovery technology for dehydration of alcohol solutions by a pervaporation process. Sustain. Environ. Res. 2013; 23: 171-7
    [28] Burshe MC, Netke SA, Sawant SB, Joshi JB, Pangarkar VG. Pervaporative dehydration of organic solvents. Sep. Sci. Technol. 1997; 32: 1335-49
    [29] Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A. CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem. Eng. J. 2011; 168: 60-7
    [30] Zhang SY, Zou Y, Wei TY, Mu CX, Liu XJ, Tong ZF. Pervaporation dehydration of binary and ternary mixtures of n-butyl acetate, n-butanol and water using PVA-CS blended membranes. Sep. Purif. Technol. 2017; 173: 314-22
    [31] Yim DW, Kong SH. Pervaporative dehydration of diethylene glycol through a hollow fiber membrane. J. Appl. Polym. Sci. 2013; 129: 499-506
    [32] Akberov RR, Fazlyev AR, Klinov AV, Malygin AV, Farakhov MI, Maryakhina VA, Kirichenko SM. Dehydration of diethylene glycol by pervaporation using HybSi ceramic membranes. Theor. Found. Chem. Eng. 2014; 48: 650-5
    [33] Li L, Xiao ZY, Tan SJ, Liang P, Zhang ZB. Composite PDMS membrane with high flux for the separation of organics from water by pervaporation. J. Membr. Sci. 2004; 243: 177-87
    [34] Zhang YL, Benes NE, Lammertink RGH. Performance study of pervaporation in a microfluidic system for the removal of acetone from water. Chem. Eng. J. 2016; 284: 1342-7
    [35] Rom A, Friedl A. Investigation of pervaporation performance of POMS membrane during separation of butanol from water and the effect of added acetone and ethanol. Sep. Purif. Technol. 2016; 170: 40-8
    [36] Jain M, Attarde D, Gupta SK. Removal of thiophenes from FCC gasoline by using a hollow fiber pervaporation module: Modeling, validation, and influence of module dimensions and flow directions. Chem. Eng. J. 2017; 308: 632-48
    [37] Kaminski W, Marszalek J, Ciolkowska A. Renewable energy source - Dehydrated ethanol. Chem. Eng. J. 2008; 135: 95-102
    [38] Sun H, Lu L, Chen X, Jiang Z. Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration of ethanol. Appl. Surf. Sci. 2008; 254: 5367-74
    [39] Lawson KW, Lloyd DR. Membrane distillation. J. Membr. Sci. 1997; 124: 1-25
    [40] Chen T-C, Huang G-H, Chen C-S, Huang Y-H. Reducing industrial wastewater and recovery of gold by direct contact membrane distillation with electrolytic system. Sustainable Environment Research 2013; 23: 209-14
    [41] Shirazi MMA, Kargari A, Tabatabaei M. Sweeping Gas Membrane Distillation (SGMD) as an Alternative for Integration of Bioethanol Processing: Study on a Commercial Membrane and Operating Parameters. Chem. Eng. Commun. 2015; 202: 457-66
    [42] Shi J-Y, Zhao Z-P, Zhu C-Y. Studies on simulation and experiments of ethanol-water mixture separation by VMD using a PTFE flat membrane module. Sep. Purif. Technol. 2014; 123: 53-63
    [43] Shirazi MMA, Kargari A, Tabatabaei M, Ismail AF, Matsuura T. Concentration of glycerol from dilute glycerol wastewater using sweeping gas membrane distillation. Chem. Eng. Process. 2014; 78: 58-66
    [44] Madhumala M, Madhavi D, Sankarshana T, Sridhar S. Recovery of hydrochloric acid and glycerol from aqueous solutions in chloralkali and chemical process industries by membrane distillation technique. Journal of the Taiwan Institute of Chemical Engineers 2014; 45: 1249-59
    [45] Gryt M, Tomaszewsk M, Grzechulska J, Morawski AW. Membrane distillation of NaCl solution containing natural organic matter. J. Membr. Sci. 2001; 181: 279-87
    [46] Kotsanopoulos KV, Arvanitoyannis IS. Membrane Processing Technology in the Food Industry: Food Processing, Wastewater Treatment, and Effects on Physical, Microbiological, Organoleptic, and Nutritional Properties of Foods. Crit. Rev. Food Sci. Nutr. 2015; 55: 1147-75
    [47] Tang N, Peng Y, Jia Z, Zhang L, Xiang J, Yuan L, Cheng P, Wang X. Vacuum membrane distillation simulation of desalination using polypropylene hydrophobic microporous membrane. J. Appl. Polym. Sci. 2015; 132:
    [48] Yang X, Wang R, Shi L, Fane AG, Debowski M. Performance improvement of PVDF hollow fiber-based membrane distillation process. J. Membr. Sci. 2011; 369: 437-47
    [49] Chel-Ken C, Sarbatly R. Vacuum membrane distillation processes for aqueous solution treatment: a review. Chemical Engineering and Processing: Process Intensification 2013; 74: 27-54
    [50] Allan FM, Qatanani N, Barghouthi I, Takatka KM. Dusty gas model of flow through naturally occurring porous media. Appl. Math. Comput. 2004; 148: 809-21
    [51] El-Bourawi MS, Ding Z, Ma R, Khayet M. A framework for better understanding membrane distillation separation process. J. Membr. Sci. 2006; 285: 4-29
    [52] Liming S, Zidu M, Xiaohong L, Kosaraju PB, Irish JR, Sirkar KK. Pilot plant studies of novel membranes and devices for direct contact membrane distillation-based desalination. J. Membr. Sci. 2008; 323: 257-70
    [53] Summers EK, Lienhard JH. Experimental study of thermal performance in air gap membrane distillation systems, including the direct solar heating of membranes. Desalination 2013; 330: 100-11
    [54] Lee J-G, Kim Y-D, Kim W-S, Francis L, Amy G, Ghaffour N. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane. J. Membr. Sci. 2015; 478: 85-95
    [55] Bahar R, Hawlader MNA, Ariff TF. Channeled coolant plate: A new method to enhance freshwater production from an air gap membrane distillation (AGMD) desalination unit. Desalination 2015; 359: 71-81
    [56] Zhao S, Feron PHM, Xie Z, Zhang J, Hoang M. Condensation studies in membrane evaporation and sweeping gas membrane distillation. J. Membr. Sci. 2014; 462: 9-16
    [57] Abu-Zeid MAE-R, Zhang Y, Dong H, Zhang L, Chen H-L, Hou L. A comprehensive review of vacuum membrane distillation technique. Desalination 2015; 356: 1-14
    [58] Bandini S, Saavedra A, Sarti GC. Vacuum membrane distillation: Experiments and modeling. AICHE J. 1997; 43: 398-408
    [59] Zhou T, Yao Y, Xiang R, Wu Y. Formation and characterization of polytetrafluoroethylene nanofiber membranes for vacuum membrane distillation. J. Membr. Sci. 2014; 453: 402-8
    [60] Bodel BR, Silicone Rubber Vapor Diffusion in Saline Water Distillation, United States Patent Serial No. 285,032, 1963
    [61] Hitsov I, Maere T, De Sitter K, Dotremont C, Nopens I. Modelling approaches in membrane distillation: A critical review. Sep. Purif. Technol. 2015; 142: 48-64
    [62] Carlsson L. The New Generation in Sea-Water Deslination SU Membrane Distillation System. Desalination 1983; 45: 221-2
    [63] Findley ME. Vaporization through porous membranes. Industrial & Engineering Chemistry Process Design and Development 1967; 6: 226-&
    [64] Hogan PA, Sudjito, Fane AG, Morrison GL. DESALINATION BY SOLAR HEATED MEMBRANE DISTILLATION. Desalination 1991; 81: 81-90
    [65] Gunka S, Verbych S, Bryk M, Hilal N. Concentration of apple juice using direct contact membrane distillation. Desalination 2006; 190: 117-24
    [66] Lin DS, Yen HW, Kao WC, Cheng CL, Chen WM, Huang CC, Chang JS. Bio-butanol production from glycerol with Clostridium pasteurianum CH4: the effects of butyrate addition and in situ butanol removal via membrane distillation. Biotechnology for Biofuels 2015; 8:
    [67] Singh D, Li L, Obusckovic G, Chau J, Sirkar KK. Novel cylindrical cross-flow hollow fiber membrane module for direct contact membrane distillation-based desalination. J. Membr. Sci. 2018; 545: 312-22

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE