| 研究生: |
楊嵐燕 Yang, Lan-Yan |
|---|---|
| 論文名稱: |
試驗計畫變更之統計推論 Statistical Inference for Clinical Trials with Protocol Amendments |
| 指導教授: |
嵇允嬋
Chi, Yunchan 周賢忠 Chow, Shein-Chung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 試驗計畫變更 、目標母體改變 、樣本數修正 、二元療效反應 、解釋變數 、貝氏 |
| 外文關鍵詞: | Protocol amendment, Shift in target patient population, Sample size adjustment, Binary study endpoint, Covariate, Bayesian |
| 相關次數: | 點閱:98 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臨床試驗中,研究人員為確保藥品的安全性及探討人體對此藥的療效反應,只針對符合特定條件的患者進行試驗。對於試驗設計的嚴謹度以及資料分析方法的適切性必須相當要求,試驗的詳細內容皆必須試前擬定並詳載於試驗計畫書(protocol)中。然而,試驗的進行往往不如預先規畫時的順利,故為了節省試驗所需耗費的時間與金錢或安全性的考量,通常會在試驗進行一段時間後,進行試驗計畫變更 (protocol amendment)。若試驗計畫中的受試條件在試驗過程中經過變更,則試驗變更前後所蒐集到的資料可能不是來自原計畫中定義的目標母體。事實上,此時採用原本試前所規劃的統計方法進行推論,會產生偏差 (bias),而且會無法達到試前預設的檢定力,進而誤導臨床研究方向。所以在受試條件被不斷變更的情形下,必須修正統計方法以及重新估算所需樣本數。連續型療效反應(continuous endpoint)且試驗發生變更的相關研究中,為了合併變更前後的資料以估計平均療效,Chow et al. 在2005年提出將每次變更下平均療效的先驗分布引入,以貝氏方法(Bayesian methodology)建立概似函數以求得平均療效的最大概似估計量,並重新估算所需樣本數。此外,針對受試條件變更的試驗,學者Chow 和 Shao (2005) 提出以統計模式連結反應變數與受試條件之間的關係,透過模式參數的估計,進一步估計目標母體之平均療效。本論文將學者Chow和Shao (2005) 以模式連結療效反應與受試條件的概念,以及Chow et al. (2005)所提出之貝氏方法,延伸至二元療效反應(binary endpoint)且受試條件變更的試驗中,以推論目標母體之有效反應率,並針對所提的檢定方法進行樣本數的修正。
It is not uncommon to modify trial procedures and/or statistical methods of on-going clinical trials through protocol amendments. A major modification could result in a shift in target patient population. In addition, frequent and significant modifications could lead to a totally different study, which is unable to address the medical questions that the original study intends to answer. Chow and Shao (2005) proposed a covariate-adjusted model with continuous study endpoint. Chow et al. (2005) proposed using a sensitivity index, as defined in Chow et al. (2002), to measure the impact of population shift. Under the assumption that the shift in location parameter is random and the shift in scale parameter is fixed, Chow et al. (2005) proposed a Bayesian approach for inferences of the treatment effect. In this dissertation, following similar ideas of Chow and Shao (2005) and Chow et al. (2005), statistical inference and sample size adjustment based on a binary study endpoint for trials with protocol amendments are derived.
1.Anscombe, F. J. (1961). Testing to establish a high degree of safety or reliability, Bulletin de l'lnstitut International de Statistique 39: 73-89.
2.Bickel, P. J., and Doksum, K. A. (2001). Mathematical Statistics. 2nd edition. Upper Saddle River, NJ: Prentice Hall.
3.Brophy, J. M. and Joseph, L. (1995). Placing trials in context using Bayesian analysis. GUSTO revisited by reverend Bayes. Journal of American Medical Association 273: 871-875.
4.Bull, S. B. (1993). Sample size and power determination for a binary outcome and an ordinal exposure when logistic regression analysis is planned. American Journal of Epidemiology 137(6): 676–684.
5.Bury, K. (1999). Statistical Distributions in Engineering. New York.: Cambridge University Press.
6.Casella, G. and Berger, R.L. (2002). Statistical Inference, 2nd edition. Pacific Grove, CA: Duxbury.
7.Chow, S. C., Chang, M. (2006). Adaptive Design Methods in Clinical Trials. New York : Taylor & Francis.
8.Chow, S. C., Chang, M. and Pong, A. (2005). Statistical consideration of adaptive methods in clinical development. Journal of Biopharmaceutical Statistics 15(4): 575-591.
9.Chow, S.C. and Liu, J. P. (2003). Design and Analysis of Clinical Trials, 2nd edition. New York: John Wiley & Sons.
10.Chow, S. C., Lu, Q. and Tse, S. K. (2007). Statistical analysis for two-stage adaptive design with different study endpoints. Journal of Biopharmaceutical Statistics 17(6): 1163–1176.
11.Chow, S. C. and Shao, J. (2005). Inference for clinical trials with some protocol amendments. Journal of Biopharmaceutical Statistics,15(4): 659-666.
12.Chow, S. C., Shao, J., Hu O. Y. (2002). Assessing sensitivity and similarity in bridging studies. Journal of Biopharmaceutical Statistics 12(3): 385-400.
13.Chuong-Stein, C., Anderson, K., Gallo, P., and Collins, S. (2006). Sample size reestimation: a review and recommendations. Drug Information Journal 40:475–484.
14.Cleophas, T. J., Zwinderman, A. H. and Cleophas, T. F. (2002). Statistical Applied to Clinical Trials. 2nd edition. New York: Springer.
15.Cui, L., Hung, H. M. J. and Wang, S. J. (1999). Modification of sample size in group sequential trials. Biometrics 55: 853–857.
16.Demidenko, E. (2007). Sample size determination for logistic regression revisited. Statistics in Medicine 26(18): 3385-3397.
17.Dubertret, L., Sterry, W., Bos, J. D., Chimenti, S., Shumack, S., Larsen, C. G., Shear, N. H. and Papp, K. A: (2006). Clinical experience acquired with the efalizumab (Raptiva) (CLEAR) trial in patients with moderateto-severe plaque psoriasis: results from a phase III international randomized, placebo-controlled trial. British Journal of Dermatology 155(1); 170-181.
18.Efron, B. (1971). Forcing a sequential experiment to be balanced. Biometrika 58: 403–417.
19.Hardwick, J. P. and Stout, Q. F. (2002). Optimal few-stage designs. Journal of Statistical Planning and Inference 104: 121–145.
20.Hwang, S. J., Beaty, T. H., and Liang, K. Y. (1994). Minimum sample size estimation to detect gene-environment interaction in case-control designs. American Journal of Epidemiology 140(11): 1029-1037.
21.Jennison, C. and Turnbull, B. W. (2000). Group Sequential Methods with Applications to Clinical Trials. New York : Chapman and Hall.
22.Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995). Continuous Univariate Distributions, vol. 2, 2nd editon. New York: Wiley.
23.Keogh, A., Richardson M., and Ruygrok P. (2004). Sirolimus in de novo heart transplant recipients reduces acute rejection and prevents coronary artery disease at 2 years-a randomized clinical trial. Circulation 110: 2694-2700.
24.Lachin, J. M. (1988). Statistical properties of randomization in clinical trials. Controlled Clinical Trials 9: 289–311.
25.Lan, K. K. G. and DeMets, D. L. (1987). Group sequential procedures: calendar versus information time. Statistics in Medicine 8: 1191–1198.
26.Lehmacher, W. and Wassmer, G. (1999). Adaptive sample size calculations in group sequential trials. Biometrics 55: 1286–1290.
27.Lilford, R. J. and Braunholtz, D. (1996). The statistical basis of public policy: a paradigm shift is overdue. British Medical Journal 313: 603-607.
28.Liu, Q., Proschan, M. A. and Pledger, G. W. (2002). A unified theory of two-stage adaptive designs. Journal of American Statistical Association. 97:1034–1041.
29.Lösch, C. and Neuhäuser, M. (2008). The statistical analysis of a clinical trial when a protocol amendment changed the inclusion criteria. BMC Medical Research Methodology 8:16.
30.Louis, T.A. (2005). Introduction to Bayesian methods II: fundamental concepts, Clinical Trials 2:291-294.
31.Lu, Q., Chow, S. C., Tse, S. K., Chi, Y. C., and Yang, L. Y., (2009). Sample size estimation based on event data for a two-stage survival adaptive trial with different durations. Journal of Biopharmaceutical Statistics 19: 311–323.
32.Lu, Q., Tse, S.K., and Chow, S.C. (2010). Analysis of time-to-event data under a two-stage survival adaptive design in clinical trials. Journal of Biopharmaceutical Statistics 20: 705–719.
33.Lubin, J. H., and Gail, M. H. (1990). On power and sample size for studying features of the relative odds disease. American Journal of Epidemiology 131(3): 552-566.
34.Maca, J., Bhattacharya, S., Dragalin, V., Gallo, P. and Krams, M. (2006). Adaptive seamless Phase II/III designs—background, operational aspects, and examples. Drug Information Journal 40: 463–474.
35.Posch, M. and Bauer, P. (1999). Adaptive two-stage designs and the conditional error function. Biometrical Journal 41: 689–696.
36.Rosenberger, W. F., Stallard, N., Ivanova, A., Harper, C. N. and Ricks, M. L. (2001). Optimal adaptive designs for binary response trials. Biometrics 57: 909–913.
37.Self, S. G. and Mauritsen, R.H. (1988). Power/sample size calculations for generalized linear models. Biometrics 44(1): 79-86.
38.Shieh, G. (2000). On power and sample size calculations for likelihood ratio tests in generalized linear models. Biometrics 56(4): 1192-1196.
39.Shih, W.J. (2006). Group sequential, sample size re-estimation and two-stage adaptive designs in clinical trials: a comparison. Statistics in Medicine 25: 933–941.
40.Smith, P. G. and Day, N. E. (1984). The design of case control studies: the influence of confounding and interaction effects. International Journal of Epidemiology 13 (3): 356-365.
41.Spiegelhalter, D. J., Abrams, K. R., and Myles, J. P. (2005). Bayesian Approach to Clinical Trials and Health-Care Evaluation. John Wiley and Sons, Ltd.
42.Svolba, G. and Bauer, P. (1999). Statistical quality control in clinical trials. Controlled Clinical Trials 20(6): 519-530.
43.Whittemore, A. S. (1981). Sample size for logistic regression with small response probability. Journal of American Statistical Association 76: 27-32.
44.Woodcock, J. (2005). FDA introduction comments: Clinical studies design and evaluation issues. Clinical Trials 2: 273-275.