簡易檢索 / 詳目顯示

研究生: 夏偉誠
Hsia, Wei-Cheng
論文名稱: 複合奈米結構之三氧化鎢基一氧化氮氣體感測器特性研究
Investigation of tungsten trioxide based NO gas sensors with composite nanostructures
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 87
中文關鍵詞: 一氧化氮氣體感測器三氧化鎢奈米柱微圖案化結構異質接面金屬氧化物奈米顆粒
外文關鍵詞: NO gas sensors, WO3 nanorods, micro-patterned structure, heterojunction, metal oxide nanoparticle
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用複合奈米結構提升三氧化鎢奈米柱一氧化氮氣體感測器特性,其目的為應用於醫療檢測呼氣一氧化氮濃度(Fraction of exhaled nitric oxide, FeNO),以三氧化鎢奈米柱作為基礎,將透過兩種不同的奈米結構對一氧化氮氣體感測器之響應特性進行優化。第一部分為微圖案化結構之晶種層,透過旋塗奈米球的方式製作奈米球模板,以最佳旋塗參數,利用氧電漿蝕刻奈米球改變微圖案化結構尺寸,並於其上沉積二氧化矽後,再將奈米求去除,接續沉積三氧化鎢完成為微圖案化晶種層,使用此微圖案化晶種層的目的是使三氧化鎢奈米柱於水熱法成長時產生交疊,形成更多同質接面以提升氣體響應度。以第一段轉速500 rpm旋轉60秒及第二段轉速1250 rpm旋轉10秒旋塗直徑為800 nm之奈米球,並於45 oC烘烤5分鐘,可形成緊密且單層之奈米球模板,在氧電漿蝕刻時間為6分鐘之奈米球模板所製備出的微圖案化結構使三氧化鎢奈米柱具有最多交疊,最佳微圖案化三氧化鎢奈米柱一氧化氮氣體感測器於操作溫度為140 oC,一氧化氮氣體濃度為1 ppm時,相較於平面式晶種層之氣體響應度可從2297.3%提升至6249.4%。
    第二部分為沉積p型金屬氧化物奈米顆粒於n型三氧化鎢奈米柱表面形成異質接面,沉積不同材料之p型金屬氧化物奈米顆粒及沉積不同含量p型金屬氧化物奈米顆粒皆會影響氣體響應特性,利用穿透式電子顯微鏡觀察奈米顆粒尺寸大小並利用能量散射光譜儀分析其含量,當沉積鎳含量為0.83 at.%之氧化鎳奈米顆粒修飾於微圖案化三氧化鎢奈米柱氣體感測器時,在一氧化氮氣體濃度為1 ppm的環境下,其最佳操作溫度為127.5 oC,且響應度可達到7183.6%,響應時間為49秒,回復時間為92秒。
    最後於穩定性的測試中,通入濃度為1 ppm之一氧化氮氣體,操作溫度為127.5 oC,在相對濕度(Relative humidity, RH)由50%提升至90%的條件下,其氣體響應特性僅減少8.1%;在一氧化氮氣體濃度為1 ppb環境下,響應度可達到48.8%;且在檢測不同氣體的量測下,其他氣體具有的最高響應度也只佔一氧化氮氣體響應度的8.8%。結果顯示,複合奈米結構三氧化鎢奈米柱一氧化氮氣體感測器除了能有效提升氣體響應度及靈敏度外,能於高濕度及低濃度的環境中保有響應特性及良好的氣體選擇性,滿足應用於醫療檢測呼氣一氧化氮的環境要求。

    This study used the composite nanostructures to enhance the performance of nitric oxide (NO) gas sensors based on tungsten trioxide (WO₃) nanorods for medical applications in measuring the fraction of exhaled nitric oxide (FeNO). Using WO₃ nanorods as the foun-dation, the response characteristics of the NO gas sensor were optimized through two dis-tinct nanostructures. In the first part, the micro-patterned seed layer was created using a nanosphere template formed by spin-coating nanospheres with optimal spin-coating pa-rameters, oxygen plasma etching was employed to adjust the size of the micro-patterned structure. This micro-patterned seed layer caused the WO₃ nanorods to overlap during hydrothermal growth, forming more homojunctions, which could enhance the responsiv-ity of the gas sensors. The micro-patterned structure prepared with 6 minutes of oxygen plasma etching resulted in WO₃ nanorods with the highest amount of overlap. The opti-mal micro-patterned WO₃ nanorod NO gas sensors, operating at 140 °C and NO concen-tration of 1 ppm, compared to a WO₃ nanorod NO gas sensors with planar seed layer, the responsivity improved from 2297.3% to 6249.4%. In the second part, p-type metal oxide nanoparticles were deposited on the surface of n-type WO₃ nanorods to form heterojunc-tions. The gas response characteristics were influenced by the material and quantity of p-type metal oxide nanoparticles. When WO₃ nanorods were decorated with nickel oxide nanoparticles containing 0.83 at.% nickel, under a NO concentration of 1 ppm, the re-sponsivity of micro-patterned WO₃ nanorod NO gas sensors achieved to 7183.6% at op-timal operating temperature of 127.5°C, it exhibited a response time of 49 seconds, and a recovery time of 92 seconds.

    摘要II AbstractIV 目錄X 表目錄XV 圖目錄XVI 第一章序論 1 1.1一氧化氮氣體感測器之重要性1 1.2研究動機 1 第二章實驗原理介紹6 2.1三氧化鎢氣體感測器簡介6 2.1.1氣體感測器介紹6 2.1.2金屬氧化物半導體式氣體感測器原理7 2.1.3氣體感測器之響應度、響應時間與回復時間8 2.1.4氣體感測器之活化能9 2.1三氧化鎢特性介紹9 2.1.6三氧化鎢晶種層與奈米柱製備10 2.2複合奈米結構簡介11 2.2.1同質接面與異質接面於氣體感測器中之影響11 2.2.2奈米球微圖案化結構12 2.2.3金屬氧化物奈米顆粒製備13 第三章實驗流程與製程方法17 3.1實驗藥品17 3.2元件製程設備18 3.2.1旋轉塗佈機18 3.2.2氧電漿蝕刻系統18 3.2.3射頻磁控式濺鍍系統18 3.2.4電子束蒸鍍系統19 3.3元件製作流程19 3.3.1石英基板清潔19 3.3.2奈米球塗佈19 3.3.3氧電漿蝕刻20 3.3.4基底層製備20 3.3.5奈米球舉離20 3.3.6晶種層製備21 3.3.奈米柱結構製備21 3.3.8金屬氧化物奈米顆粒沉積21 3.3.9金屬電極製備22 3.4量測分析設備22 3.4.1掃描式電子顯微鏡22 3.4.2X光光電子能譜儀22 3.4.穿透式電子顯微鏡23 3.4.4氣體感測特性量測系統24 第四章研究成果與討論30 4.1微圖案結構最佳化製程分析30 4.1.1不同旋轉塗佈轉速對於微圖案化結構之影響30 4.1.2不同氧電漿蝕刻時間對於微圖案化結構之影響31 4.1.3最佳微圖案化結構之氣體感測器響應特性分析33 4.2金屬氧化物奈米顆粒對於微圖案化三氧化鎢氣體感測器特性分析33 4.2.1金屬氧化物之特性分析34 4.2.2沉積金屬氧化物奈米顆粒於三氧化鎢奈米柱表面之形貌分析35 4.2.3X光光電子能譜儀分析36 4.2.4紫外光光電子能譜儀與低能量反光電子能譜儀分析37 4.2.5氣體感測器響應特性分析38 4.2.6氣體感測器穩定度測試及分析40 第五章結論57 參考文獻59

    [1] P. J. Chien, T. Suzuki, M. Ye, K. Toma, T. Arakawa, Y. Iwasaki, and K. Mitsubayashi, “Ultra-sensitive isopropanol biochemical gas sensor (Bio-Sniffer) for monitoring of human volatiles”, Sensors, vol. 20, pp. 6827-1-6827-13, 2020.
    [2] J. Li, Q. Y. Li, X. Wei, Q. Chen, M. X. Sun, and Y. X. Li, “Measurement of exhaled nitric oxide in 456 lung cancer patients using a ringdown FENO analyzer”, Metabolites, vol. 11, pp. 352-1-352-12, 2021.
    [3] Z. H. Zhang, H. W. Cang, Y. Y. Xie, H. Y. Li, and H. Li, “A miniaturized photodiode-based chemiluminescence sensor for measurement of fractional exhaled nitric oxide”, Sens. Actuator B-Chem., vol. 394, pp.134402-1-134402-8, 2023.
    [4] B. Qian, H. R. Fan, and W. Zhou, “Laser-localized hydrothermal synthesis of flexible ZnO gas sensor for room-temperature detection of nitrogen dioxide”, J. Mater. Sci.-Mater. Electron., vol. 33, pp. 8086-8095, 2022.
    [5] M. Shoorangiz, L. Shariatifard, H. Roshan, and A. Mirzaei, “Selective ethanol sensor based on α-Fe2O3 nanoparticles”, Inorg. Chem. Commun., vol. 133, pp. 108961-1-108961-7, 2021.
    [6] D. L. Chen, L. Yin, L. F. Ge, B. B. Fan, R. Zhang, J. Sun, and G. S. Shao, “Low-temperature and highly selective NO-sensing performance of WO3 nanoplates decorated with silver nanoparticles”, Sens. Actuator B-Chem., vol. 185, pp. 445-455, 2013.
    [7] W. C. Chang, W. C. Yu, C. H. Wu, C. Y. Wang, Z. S. Hong, and R. J. Wu, “Flower-like ZnO nanostructure for NO sensing at room temperature”, J. Nanosci. Nanotechnol., vol. 16, pp. 9209-9214, 2016.
    [8] N. D. Chinh, N. D. Quang, H. D. Lee, T. T. Hien, N. M. Hieu, D. H. Kim, C. J Kim, and D. J. Kim, “NO gas sensing kinetics at room temperature under UV light irradiation of In2O3 nanostructures”, Sci Rep., vol. 6, pp. 35066-1-35066-11, 2016.
    [9] Y. X. Li, Z. X. Song, F. Jiang, Q. Sun, F. Ma, H. R. Wang, K. Chen, “Thermal annealing induced mazy structure on MoO3 thin films and their high sensing performance to NO gas at room temperature”, Ceram. Int., vol. 42, pp. 18318-19323, 2016.
    [10] P. Tao, Y. L. Xua, Y.C. Zhou, C. W. Song, Y. H. Qiu, W. Dong, M. H. Zhang, and M.H. Shao, “Nitrogen oxide (NO) gas-sensing properties of Bi2MoO6 nanosheets synthesized by a hydrothermal method”, Mater. Res.-Ibero-am. J. Mater., vol. 20, pp. 786-790, 2017.
    [11] M. Penza, M. A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, and G. Cassano, “Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor”, Sens. Actuators B-Chem., vol. 50, pp. 9-18, 1998.
    [12] H. Kawasaki, J. Namba, K. Iwatsuji, Y. Suda, K. Wada, K. Ebihara, and T. Ohshima, “NOx gas sensing properties of tungsten oxide thin films synthesized by pulsed laser deposition method”, Appl. Surf. Sci., vol. 197-198, pp. 547-551, 2002.
    [13] Y. Masuda, “Recent advances in SnO2 nanostructure based gas sensors”, Sens. Actuators B-Chem., vol. 364, pp. 131876-1-131876-27, 2022.
    [14] C. Zhou, F. Meng, K. Chen, X. Yang, T. Wang, P. Sun, F. Liu, X. Yan, K. Shimanoe, and G. Lu, “High sensitivity and low detection limit of acetone sensor based on NiO/Zn2SnO4 p-n heterojunction octahedrons”, Sens. Actuator B-Chem., vol. 339, pp. 129912-1-129912-12, 2021.
    [15] M. He, L. Xie, X. Zhao, X. Hu, S. Li, and Z. G. Zhu, “Highly sensitive and selective H2S gas sensors based onflower-likeWO3/CuO composites operating at low/room temperature”, J. Alloy. Compd., vol. 788, pp. 36-43, 2019.
    [16] S. H. Wei, G. F. Chang, Y. Liu, Y. D. Wu, Y. Zhang, Y. L. Hu, and W. Zhang, “Heterojunction and exposed facet engineering of ZnO/WO3 flower structure for fast and sensitive low-concentration NO2 sensing”, Mater. Res. Bull., vol. 163, pp. 112218-1-112218-14, 2023.
    [17] H. Naderi, S. Hajati, M. Ghaedi, and J. P. Espinos, “Highly selective few-ppm NO gas-sensing based on necklace-like nanofibers of ZnO/CdO n-n type I heterojunction”, Sens. Actuator B-Chem., vol. 297, pp. 126774-1-126774-10, 2019.
    [18] D. Z. Zhang, Z. M. Yang, P. Li, and X. Y. Zhou, “Ozone gas sensing properties of metal-organic frameworks-derived In2O3 hollow microtubes decorated with ZnO nanoparticles”, Sens. Actuator B-Chem., vol. 301, pp. 127081-1-127081-9, 2019.
    [19] H. S. Ko, S. H. Park, S. Y. An, and C. M. Lee, “Enhanced ethanol sensing properties of TeO2/In2O3 core–shell nanorod sensors”, Curr. Appl. Phys., vol. 13, pp. 919-924, 2013.
    [20] Y. F. Li, L. Yu, C. Zheng, Z. Ma, S. Yang, F. Song, K. Zheng, W. L. Ye, Y. Zhang, Y. Wang, and F. K. Tittel, “Development and field deployment of a mid-infrared CO and CO2 dual-gas sensor system for early fire detection and location”, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., vol. 270, pp. 120834-1-120834-16, 2022.
    [21] M. Serafini, F. Mariani, I. Gualandi, F. Decataldo, L. Possanzini, M. Tessarolo, B. Fraboni, D. Tonelli, and E. Scavetta, “A wearable electrochemical gas sensor for ammonia detection”, Sensors, vol. 21, pp. 7905-1-7905-15, 2021.
    [22] C. H. Han, D. W. Hong, S. D. Han, J. Gwak, and K. C. Singh, “Catalytic combustion type hydrogen gas sensor using TiO2 and UV-LED”, Sens. Actuator B-Chem., vol. 125, pp. 224-228, 2007.
    [23] S. Uma, and M. K. Shobana, “Band structure and mechanism of semiconductor metal oxide heterojunction gas sensor”, Inorg. Chem. Commun., vol. 160, pp. 111941-1-111941-18, 2024.
    [24] Q. T. Li, W. Zeng, and Y. Li, “Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: recent developments”, Sens. Actuator B-Chem., vol. 359, pp. 131579-1-131579-29, 2022.
    [25] S. S. Shendage, V. L. Patil, S. A. Vanalakar, S. P. Patil, N. S. Harale, J. L. Bhosale, J. H. Kim, and P. S. Patil, “Sensitive and selective NO2 gas sensor based on WO3 nanoplates”, Sens. Actuator B-Chem., vol. 240, pp. 426-433, 2017.
    [26] H. Naderi, S. Hajati, M. Ghaedi, and J. P. Espinos, “Highly selective few-ppm NO gas-sensing based on necklace-like nanofibers of ZnO/CdO n-n type I heterojunction”, Sens. Actuator B-Chem., vol. 297, pp. 126774-1-126774-10, 2019.
    [27] H. C. Zhai, Z. Y. Wu, and Z. L. Fang, “Recent progress of Ga2O3-based gas sensors”, Ceram. Int., vol. 48, pp. 24213-24233, 2022.
    [28] M.L. Zhang, T. Ning, S.Y. Zhang, Z.M. Li, Z.H. Yuan, and Q.X. Cao, “Response time and mechanism of Pd modified TiO2 gas sensor”, Mater. Sci. Semicond. Process, vol. 17, pp. 149-154, 2014.
    [29] A. Dey, “Semiconductor metal oxide gas sensors: a review”, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater., vol. 229, pp. 206-217, 2018.
    [30] L. J. Jian, R. Peng, Y. Z. He, X. M. Wang, and W. W. Guo, “One-step hydrothermal synthesis of urchin-like WO3 with excellent ammonia gas sensing property”, Mater. Lett., vol. 336, pp. 133897-1-133897-4, 2023.
    [31] C. T. Lee, H. Y. Lee, and Y. S. Chiu, “Performance improvement of nitrogen oxide gas sensors using Au catalytic metal on SnO2/WO3 complex nanoparticle sensing layer”, IEEE Sensors J., vol. 16, pp. 7581-7585, 2016.
    [32] C. S. Rout, K. Ganesh, and A. Govindaraj, and C. N. R. Rao, “Sensors for the nitrogen oxides, NO2, NO and N2O, based on In2O3 and WO3 nanowires”, Appl. Phys. A-Mater. Sci. Process., vol. 85, pp. 241-246, 2006.
    [33] F. Zheng, M. Guo, and M. Zhang, “Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO substrates”, Crystengcomm, vol. 15, pp. 277-284, 2013.
    [34] H. Hassani, E. Marzbanrad, C. Zamani, and B. Raissi, “Effect of hydrothermal duration on synthesis of WO3 nanorods”, J. Mater. Sci.-Mater. Electron., vol. 22, pp. 1264-1268, 2011.
    [35] N. Li, T. C. Chang, H. Gao, X. Y. Gao, and L. Ge, “Morphology-controlled WO3-x homojunction: hydrothermal synthesis, adsorption properties, and visible-light-driven photocatalytic and chromic properties”, Nanotechnology, vol. 30, pp. 415601-1-415601-12, 2019.
    [36] F. Zheng, M. Zhang, and M. Guo, “Controllable preparation of WO3 nanorod arrays by hydrothermal method”, Thin Solid Films, vol. 534, pp. 45-53, 2013.
    [37] J. H. Bang, M. S. Choi, A. Mirzaei, Y. J. Kwon, S. S. Kim, T. W. Kim, and H. W. Kim, “Selective NO2 sensor based on Bi2O3 branched SnO2 nanowires”, Sens. Actuator B-Chem., vol. 274, pp. 356-369, 2018.
    [38] N. M. Hung, C. M. Hung, N. V. Duy, N. D. Hoa, H. S. Hong, T. K. Dang, N. N. Viet, L. V. Thong, P. H. Phuoc, and N. V. Hieu, “Significantly enhanced NO2 gas-sensing performance of nanojunction-networked SnO2 nanowires by pulsed UV-radiation”, Sens. Actuator A-Phys., vol. 327, pp. 112759-1-112759-10, 2021.
    [39] H. Kwon, J. S. Yoon, Y. Lee, D. Y. Kim, C. K. Baek, and J. K. Kim, “An array of metal oxides nanoscale hetero p-n junctions toward designable and highly-selective gas sensors”, Sens. Actuator B-Chem., vol. 255, pp. 1663-1670, 2018.
    [40] T. Ogi, L. B. Modesto-Lopez, F. Iskandar, and K. Okuyama, “Fabrication of a large area monolayer of silica particles on a sapphire substrate by a spin coating method”, Colloid Surf. A-Physicochem. Eng. Asp., vol. 297, pp. 71-78, 2007.
    [41] Y. G. Ko, D.H. Shin, G. S. Lee, and U. S. Choi, “Fabrication of colloidal crystals on hydrophilic/hydrophobic surface by spin-coating”, Colloid Surf. A-Physicochem. Eng. Asp., vol. 385, pp. 188-194, 2011.
    [42] A. B. D. Nandiyanto, T. Ogi, F. Iskandar, and K. Okuyama, “Highly ordered porous monolayer generation by dual-speed spin-coating with colloidal templates”, Chem. Eng. J., vol. 167, pp. 409-415, 2011.
    [43] Y. Z. Wu, C. Zhang, Y. Yuan, Z. W. Wang, W. J. Shao, H. J. Wang, and X. L. Xu, “Fabrication of wafer-size monolayer close-packed colloidal crystals via slope self-assembly and thermal treatment”, Langmuir, vol. 29, pp. 14017−14023, 2013.
    [44] H. J. Kim, and J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview”, Sens. Actuators B-Chem., vol. 192, pp. 607-627, 2014.
    [45] A. A. Tomchenko, G. P. Harmer, B. T. Marquis, J. W. Allen, “Semiconducting metal oxide sensor array for the selective detection of combustion gases” Sens. Actuators B-Chem., vol. 93, pp. 126-134, 2003.
    [46] Y. P. Zhang, K. K. Zhu, R. Li, S. Y. Zeng, and L. Wang, “Structural construction of WO3 nanorods as anode materials for lithium-ion batteries to improve their electrochemical performance”, Nanomaterials, vol. 13, pp. 776-1−776-12, 2023.
    [47] Y. Wang, F. Cao, W. W. Lin, F. Y. Zhao, J. Zhou, S. Li, and G. W. Qin, “In situ synthesis of Ni/NiO composites with defect-rich ultrathin nanosheets for highly efficient biomass-derivative selective hydrogenation”, J. Mater. Chem. A, vol. 7, pp. 17834−17841, 2019.
    [48] D. S. Kim, and H. C. Lee, “Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film”, J. Appl. Phys., vol. 112, pp. 034504-1−034504-5, 2012.
    [49] J. Z. Y. Tan, F. Xia, and M. M. Maroto-Valer, “Raspberry–like microspheres of core–shell Cr2O3/TiO2 nanoparticles for CO2 photoreduction”, ChemSusChem, vol. 12, pp. 5246−5252, 2019.
    [50] K. Y. Li and D. F. Xue, “Estimation of electronegativity values of elements in different valence states”, J. Phys. Chem. A, vol. 110, pp. 11332−11337, 2006.
    [51] K. Y. Li, M. Li, and D. F. Xue, “Solution-phase electronegativity scale: insight into the chemical behaviors of metal ions in solution”, J. Phys. Chem. A., vol. 116, pp. 4192−4198, 2012.
    [52] Q. Hou, J. Buckeridge, T. Lazauskas, D. Mora-Fonz, A. A. Sokol, S. M. Woodley, and C. R. A. Catlow, “Defect formation in In2O3 and SnO2: a new atomistic approach based on accurate lattice energies”, J. Mater. Chem. C, vol. 6, pp. 12386–12395, 2018.
    [53] J. C. A. D. Queiroz, F. J. B. D. Azevedo, J. Q D. M. Neto, I. O. Nascimento, I. A. D. Souza, M. G. D. O. Queiroz, E. B. D. Melo, J. D. D. Melo, and T. H. D. C. Costa, “Structural and optical properties of Al-doped ZnO thin films produced by magnetron sputtering”, Process. Appl. Ceram., vol. 14, pp. 119–127, 2020.
    [54] S. Y. Cho, D. H. Jang, H. Y. Kang, H. J. Koh, J. H. Choi, and H. T. Jung, “Ten nanometer scale WO3/CuO heterojunction nanochannel for an ultrasensitive chemical sensor”, Anal. Chem., vol. 91, pp. 6850–6858, 2019.
    [55] S. Ghosh, M. Baral, R. Kamparath, S. D. Singh, and T. Ganguli, “Investigations on band commutativity at all oxide p-type NiO/n-type β-Ga2O3 heterojunction using photoelectron spectroscopy”, Appl. Phys. Lett., vol. 115, pp. 251603-1–251603-6, 2019.
    [56] Z. F. Hu, M. K. Xu, Z. R. Shen, and J. C. Yu, “A nanostructured chromium(III) oxide/tungsten(VI) oxide p–n junction photoanode toward enhanced efficiency for water oxidation”, J. Mater. Chem. A, vol. 3, pp. 14046–14053, 2015.
    [57] Q. A. Drmosh, “Variation of sputtered WO2.72 film thickness in Ag (NPs)/WO2.72/Au (NPs) system for optimizing sensing behaviors to NH3”, Chem. Phys. Lett., vol. 790, pp. 139355-1–139355-8, 2022.
    [58] D. V. Ponnuvelu, J. Dhakshinamoorthy, A. K. Prasad, S. Dhara, M. Kamruddin, and B. Pullithadathil, “Geometrically controlled Au -decorated ZnO heterojunction nanostructures for NO2 detection”, ACS Appl. Nano Mater., vol. 3, pp. 5898–5909, 2020.
    [59] E. Mansour, R. Vishinkin, S. Rihet, W. Saliba, F. Fish, P. Sarfati, and H. Haick, “Measurement of temperature and relative humidity in exhaled breath”, Sens. Actuator B-Chem., vol. 304, pp. 127371-1–127371-8, 2020.
    [60] L. Liao, S. Y. Li, Y. R. Jin, F. G. Cai, and Q. Y. Zhang, “Effect of annealing temperature on the formation of oxygen vacancies on the surface of flower-like SnSe/SnO2 heterostructure and visible light catalytic performance”, Phys. Scr., vol. 98, pp. 125981-1-125981-15, 2023.
    [61] M. Manoharan, K. Govindharaj, K. Muthumalai, S. Kumaravel, Y. Haldorai, and R. T. R. Kumar, “Interface oxygen vacancy-enhanced Co3O4/WO3 nanorod heterojunction for sub-ppm level detection of NOx”, Adv. Eng. Mater., vol. 25, pp. 2300727-1-2300727-9, 2023.
    [62] S. Zhu, Q. Y. Tian, G. G. Wu, W. A. Bian, N. Sun, X. Wang, C. J. Li, Y. C. Zhang, H. R. Dou, C. Y. Gong, X. Q. Dong, J. P. Sun, Y. Z. An, Q. Jing, and B. Liu, “Highly sensitive and stable H2 gas sensor based on p-PdO-n-WO3-heterostructure-homogeneously-dispersing thin film”, Int. J. Hydrog. Energy, vol. 47, pp. 17821-17834, 2022.
    [63] M. H. Sadeghi, C. E. Wright, S. Hart, M. Crooks, and A. H. Morice, “Does FeNO predict clinical characteristics in chronic cough?”, Lung, vol. 196, pp. 59-64, 2018.
    [64] C. R. Kuo, M. Spears, J. Haughney, A. Smith, J. Miller, T. Bradshaw, L. Murray, P. Williamson, and B. Lipworth, “Scottish consensus statement on the role of FeNO in adult asthma”, Respir. Med., vol. 155, pp. 55-57, 2019.
    [65] X. W. Zou, X. Y. Yan, G. M. Li, Y. M. Tian, M. A. Zhang, and L. P. Liang, “Solution combustion synthesis and enhanced gas sensing properties of porous In2O3/ZnO heterostructures”, RSC Adv., vol. 7, pp. 34482-34487, 2017.
    [66] Z. Wen, and T. M. Liu, “Gas-sensing properties of SnO2–TiO2-based sensor for volatile organic compound gas and its sensing mechanism”, Physica B, vol. 405, pp. 1345-1348, 2010.

    無法下載圖示 校內:2029-08-21公開
    校外:2029-08-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE