簡易檢索 / 詳目顯示

研究生: 賴威宏
Lai, Wei-Hung
論文名稱: 模型預測控制在無人地面載具的軌跡規劃與追蹤的應用
Unmanned Ground Vehicle Trajectory Generation and Tracking Using Model Predictive Control
指導教授: 譚俊豪
Tarn, Jiun-Haur
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 59
中文關鍵詞: 無人載具路徑規劃NMPC
外文關鍵詞: Trajectory Generation, Nonlinear Model Predictive Control, NMPC, Unmanned Ground Vehicle
相關次數: 點閱:112下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無人地面載具,是一種可以透過遠端遙控或者單晶片微處理器來操控的車輛,本篇論文提出了一個當無人載具行走在一個未知環境下,發現障礙物時,該如何規劃出一條適當的軌跡並追蹤這條軌跡以達到避障的目的。本論文為了加快運算的速度,將使用一種簡化的腳踏車模型來取代一般的車子系統模型,進行系統驗證確認模型的可行性之後,會使用Nonlinear Model Predictive Control(NMPC),也就是非線性的模型預測控制規劃出適當的行進軌跡以及控制輸入,再由PD cortroller做狀態回授控制,達到避障的效果。並透過CarSim這套軟體所提供的各式的車輛模型,進行模擬後得到模擬的實驗結果。本篇論文的貢獻是將Y-S Yoon期刊[1]第三章的系統模型與控制理論轉換成matlab code及simulink odel,並以CarSim進行動畫模擬已確定結果是否符合預期。
    關鍵字:無人載具、路徑規劃、NMPC

    SUMMARY
    Unmanned Ground Vehicle (UGV) are cars which can controlled by computer or microprocessor. In this thesis, we provide an obstacle avoidance scheme for unmanned ground vehicle as an active safety procedure in unknown environments. This thesis considers two kinds of scenarios, one is that the location of obstacles are known and the full-steps obstacle avoidance method will be used. The other is the location of the bstacles are unknown. Finite-steps obstacle avoidance method will then be used. Both of them use the same method called Nonlinear Model Predictive Control (NMPC). NMPC will generate a safe trajectory via gradient descent method, in which the dynamic model will be replaced by a simplified bicycle model for saving the speed of computing. To make sure the simplified model can generate safe trajectories, we have to validate the model and a PD controller is designed to track the generated trajectory. To obtain safe trajectories in the nonlinear model predictive framework, local obstacle information is incorporated into the cost function using distance based or parallax based method. Results of simulation will be presented by CarSim animation software.
    Key word: Trajectory Generation, Nonlinear Model Predictive Control, NMPC, Unmanned Ground Vehicle

    目錄 . 摘要 I ABSTRACT II 誌謝 VII 目錄 1 表目錄 3 圖目錄 3 第一章:緒論 5 1.1前言 5 1.2論文大綱 6 第二章:動力模型 7 (節錄自[1]-" Obstacle avoidance of autonomous vehicles based on model predictive control "3.1節;成果:腳踏車模型matlab code-Appendix A & B) 7 2.1腳踏車模型 7 2.2系統驗證 11 第三章: 模型預測控制 14 (節錄自[1]-" Obstacle avoidance of autonomous vehicles based on model predictive control "3.2節;成果:NMPC & Optimization process matlab code-Appendix B) 14 3.1基本模型預測控制理論 14 3.2參考軌跡的建立 17 3.3障礙物位勢函數 17 3.3.1距離位勢函數 18 3.3.2視差角位勢函數 19 第四章:系統最佳化流程 23 (節錄自[1]-" Obstacle avoidance of autonomous vehicles based on model predictive control "3.2.3節; 成果:NMPC& Optimization process matlab code-Appendix C) 23 4.1系統最佳化流程 23 4.2路徑規劃與追蹤 26 4.2.1 full-steps軌跡規劃 26 4.2.2 finite-steps軌跡規劃 27 第五章: 實驗結果與討論 29 5.1 軟體簡介 29 5.2 實驗結果 30 5.2.1 full steps軌跡規劃結果 31 5.2.2 finite steps軌跡規劃結果 35 5.3 CarSim 實驗結果動畫擷圖 39 第六章:結論與未來展望 40 6. 1結論 40 6. 2 未來展望 41 參考文獻 42 附 錄A: 腳踏車模型Matlab Code(continues model) 45 附 錄B: 腳踏車模型Matlab Code(discretize model) 46 附 錄C: NMPC & Optimization process Matlab Code 47

    參考文獻
    [1] J-M Park, D-W Kim, Y-S Yoon, H J Kim and K-S Yi, Obstacle avoidance of autonomous vehicles based on model predictive control, 2009
    [2] Kou, Y. S., Peng, H., and Jung, D. H. Development of an integrated chassis control system for worstcase studies. In Proceedings of the Eighth International Symposium on Advanced vehicle control,Taipei, Republic of China, 20–24 August 2006, pp.47–52 (JSAE, Tokyo, Japan).
    [3] Cho, W. K., Yoon, J. Y., Kim, J. T., Hur, J. W., and Yi, K. S. An investigation into unified chassis control scheme for optimized vehicle stability and maneuverability. Veh. System Dyn., 2008, 46(1), 87–105.
    [4] Zheng, S., Tang, H., Han, Z., and Zhang, Y. Controller design for vehicle stability enhancement. Control Engng Pract., 2009, 14(12), 1413–1421.
    [5] Rieth, P. E. and Schwarz, R. ESC II - ESC with active steering intervention. SAE technical paper 2004-01-0260, 2004.S. Bayraktar and E. Feron. Experiments with small helicopter automated landings at unusual attitudes. arXiv, 2007.
    [6] Chung, T. and Yi, K. S. An investigation into differential braking strategies on a bank road for vehicle stability control. Proc. IMechE, Part D: J. Automobile Engineering, 2007, 221, 443–455. DOI:
    [7] Moon, S. W., Moon, I. K., and Yi, K. S. Design,tuning and evaluation of a full-range adaptive cruise control system with collision avoidance.Control Engng Pract., 2009, 17(4), 442–455.
    [8] Vahidi, A. and Eskandarian, A. Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Trans. Intell. Trans. System,2003, 4(3), 143–153.
    [9] Fancher, P., Bareket, Z., and Erivin, R. Humancentered design of an ACC-with-braking and forward-crash-warning system. In Proceedings of the Fifth International Symposium on Advanced vehicle control, Ann Arbor, Michigan, USA, 22–24 August 2000 (JSAE, Tokyo, Japan).
    [10] Wang, J. and Rajamani, R. Should adaptive cruise control systems be designed to maintain a constant time gap between vehicles. IEEE Trans. Veh.Technol., 2004, 53(5), 1480–1490.
    [11] Borelli, F., Falcone, P., Keviczky, T., Asgari, J., and Hrovat, D. MPC-based approach to active steering for autonomous vehicle systems. Int. J. Veh. Auton. System, 2005, 3, 265–291.
    [12] Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., and Hrovat, D. A real-time model predictive control approach for autonomous active steering. In Proceedings of the IFAC Workshop on NMPC for fast systems, Grenoble, France, 2006, pp. 59–64 (IFAC, Laxenburg, Austria).
    [13] Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., and Hrovat, D. A model predictive control approach for combined braking and steering in autonomous vehicles. In Proceedings of the 15th Mediterranean Conference on Control and Automation, 2007.
    [14] Connolly, C. I., Burns, J. B., and Weiss, R. Path planning using Laplace’s equation. In Proceedings of the IEEE International Conference on Robotics. and automation, Cincinnati, Ohio, 1990, pp. 2102–2106 (IEEE, Piscataway, New Jersey).
    [15] Kim, J. O. and Khosla, P. Real-time obstacle avoidance using harmonic potential functions. In Proceedings of the IEEE International Conference on Robotics and automation, Sacramento, California,1991, pp. 790–796 (IEEE, Piscataway, New Jersey).
    [16] Sundar, S. and Shiller, Z. Near-time optimal path planning using potential functions. In Proceedings of the IEEE/RSJ International Workshop on Intelligent robotics and systems (IROS), Osaka, Japan,1991, pp. 1269–1274 (IEEE, Piscataway, New Jersey,USA).
    [17] Al-Jumily, A. and Leoung, C. Wavefront propagation and fuzzy-based autonomous navigation. Int. J. Adv. Robot. Systems, 2005, 2(2), 93–102.
    [18] Kim, H. J., Shim, D. H., and Sastry, S. Nonlinear model predictive control for rotorcraft-base unmanned aerial vehicles. In Proceedings of the American control conference, Anchorage, Alaska,2002, pp. 3576–3581 (IEEE, Piscataway, New Jersey,USA).
    [19] Kim, H. J. and Shim, D. H. A flight control system for aerial robots: algorithms and experiments.Control Engng Pract., 2003, 11(12), 1389–1400.
    [20] Fahimi, F. Non-linear model predicitve formation control for groups of autonomous surface vessels.Int. J. Control, 2007, 80(8), 1248–1259.
    [21] Yoon, Y. S., Choe, T. S., Park, Y. W., and Kim, H. J.Obstacle avoidance for wheeled robots in unknown environments using model predictive control. InProceedings of the IFAC World Congress, Seoul,Korea, 2008.
    [22] Kang, J. Y. Development of the human driver model based on the human factor. MS Thesis, Seoul National University, 2007.
    [23] Bertsekas, D. Nonlinear programming, 1999 (Athena Scientific, Nashua, New Hampshire, USA).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE