簡易檢索 / 詳目顯示

研究生: 魏嘉駿
Wei, Chia-Chun
論文名稱: 鐵酸鉍薄膜之側向磊晶
Lateral epitaxy of BiFeO3 thin films
指導教授: 楊展其
Yang, Jan-Chi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 51
中文關鍵詞: 鐵酸鉍側向磊晶旋轉轉移
外文關鍵詞: twist transfer, lateral epitaxy, BiFeO3
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在近年的材料研究上,雷射脈衝系統提供了各式各樣的材料結構藉以達成研究不同材料系統間的交互作用,其中又以獨立材料層(Freestanding)的研究最為新穎,透過犧牲層的手法,獲得無壓應力的獨立薄膜。此外,在材料的研究中,材料堆疊又是另外一門學問,而同質材料堆疊中,最出名的材料堆疊手法就是石墨烯的魔術角度,透過不同角度的堆疊達成電性調控的手法。
    本研究中,我們透過結合了自支撐薄膜技術與轉移特定角度的材料堆疊手法,製作出不同晶向的薄膜堆疊,我們稱之為旋轉轉移(Twist transfer)。並透過磊晶在這特殊基板上的鐵酸鉍,進行結構與特性的分析,替氧化物研究上開啟一個新的研究方向。
    從鐵酸鉍的保留行為上發現,在轉移區上的資訊保存上獲得更長的保留時間,這種旋轉轉移中的過渡帶上可高達五種不同極化方向的調控,藉以達到數種位元的記憶,替奈米元件中開啟一個新的儲存結構。

    In the research of materials, different structures will lead to different boundary conditions and can be adopted to manipulate the characteristics of different material systems. Such features have made those materials exhibiting outstanding properties and potential candidates in applied physics. In this research, we demonstrate a new heterostructure called lateral epitaxy for complex oxide thin film by the combination of freestanding technique and the concept of twist stacking. With sacrificial layer, freestanding SrTiO3 thin film can be obtained and transferred with certain angle to fabricate twist substrate. In order to understand the influence of this structure, we have demonstrated epitaxial BiFeO3 on twist substrate and measured the functionalities by scanning probe microscopy (SPM), X-ray diffraction (XRD), transmission electron microscopy (TEM)…etc. It is worth to note that the domain structure of BiFeO3 exhibits significant difference in size, which is related to the angle between freestanding thin film and substrate. In the end, we provide a prototype application of twist BiFeO3 for lateral epitaxy.

    摘要 I 總目錄 X 表目錄 XII 圖目錄 XII 第一章 緒論 1 第二章 文獻回顧 3 2.1 脈衝雷射沉積與複雜性氧化物發展簡介 3 2.1.1 脈衝雷射沉積發展與演進 3 2.1.2 複雜性氧化物結構發展 4 2.2 多鐵材料簡介 7 2.3 BFO介紹 9 2.3.1 基本性質 9 2.3.2 BFO電場操控文獻回顧 12 2.4 自支撐獨立複雜性氧化物薄膜 14 2.5 莫爾圖像(Moiré Pattern) 15 第三章 實驗原理與方法 17 3.1 脈衝雷射沉積系統 17 3.2 旋轉轉移 19 3.3 掃描式探針顯微術 20 3.3.1 Scanasyst 22 3.3.2 Piezoelectric Force Microscopy, PFM 22 3.3.3 Conductive Atomic Force Microscopy, CAFM 24 3.4 X光繞射儀(X-ray Diffraction) 25 3.4.1 θ - 2θ scan 26 3.4.2 Line scan 26 3.4.3 ψ scan 26 3.4.4 Reciprocal Space Mapping (RSM) 27 3.5 X射線吸收光譜 (X-ray absorption spectroscopy) 28 3.5.1偏振相關(Polarization dependence) 31 3.5.2 磁性線性二向性 (Magnetic linear dichroism) 31 3.6 穿透式電子顯微鏡 (Transmission Electron Microscopy,TEM) 33 第四章 實驗結果與討論 34 4.1 Twist BFO 結構分析 34 4.2 Twist BFO 電性分析 41 第五章 結論 47 第六章 參考文獻 49

    1 Huang, Y.-L. et al. Pulsed laser deposition of complex oxide heteroepitaxy. Chinese Journal of Physics, 60481-501, (2019).
    2 Salvador, P. A., Haghiri-Gosnet, A. M., Mercey, B., Hervieu, M. & Raveau, B. Growth and magnetoresistive properties of (LaMnO3)m(SrMnO3)n superlattices. Applied Physics Letters, 75,17, 2638-2640, (1999).
    3 Nogués, J. & Schuller, I. K. Exchange bias. Journal of Magnetism and Magnetic Materials, 192,2, 203-232, (1999).
    4 Srinivasan, G. et al. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Physical Review B, 64,21, 214408, (2001).
    5 Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature, 427,6973, 423-426, (2004).
    6 Alpay, S. P., Misirlioglu, I. B., Nagarajan, V. & Ramesh, R. Can interface dislocations degrade ferroelectric properties? Applied Physics Letters, 85,11, 2044-2046, (2004).
    7 Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 306,5698, 1005-1009, (2004).
    8 Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3. Nature, 430,7001, 758-761, (2004).
    9 Tsui, F., Smoak, M. C., Nath, T. K. & Eom, C. B. Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films. Applied Physics Letters, 76,17, 2421-2423, (2000).
    10 He, Y. et al. Metal Organic Frameworks Combining CoFe2O4 Magnetic Nanoparticles as Highly Efficient SERS Sensing Platform for Ultrasensitive Detection of N-Terminal Pro-Brain Natriuretic Peptide. ACS Applied Materials & Interfaces, 8,12, 7683-7690, (2016).
    11 Koma, A. Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films, 216,1, 72-76, (1992).
    12 Wang, K. et al. High-quality Bi2Te3 thin films grown on mica substrates for potential optoelectronic applications. Applied Physics Letters, 103,3, 031605, (2013).
    13 Onishi, H. & Hotta, T. An orbital-based scenario for the magnetic structure of neptunium compounds. New Journal of Physics, 6193-193, (2004).
    14 Dong, S. et al. Exchange Bias Driven by the Dzyaloshinskii-Moriya Interaction and Ferroelectric Polarization at $G$-Type Antiferromagnetic Perovskite Interfaces. Physical Review Letters, 103,12, 127201, (2009).
    15 Chu, Y.-H., Martin, L. W., Holcomb, M. B. & Ramesh, R. Controlling magnetism with multiferroics. Materials Today, 10,10, 16-23, (2007).
    16 Zavaliche, F. et al. Polarization switching in epitaxial BiFeO3 films. Applied Physics Letters, 87,25, 252902, (2005).
    17 Streiffer, S. K. et al. Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. Journal of Applied Physics, 83,5, 2742-2753, (1998).
    18 Chen, Z. et al. Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nature Communications, 9,1, 3764, (2018).
    19 Huang, Y.-C. et al. Giant Enhancement of Ferroelectric Retention in BiFeO3 Mixed-Phase Boundary. Advanced Materials, 26,36, 6335-6340, (2014).
    20 Ren, W. et al. Ferroelectric Domains in Multiferroic BiFeO3 Films under Epitaxial Strains. Physical Review Letters, 110,18, 187601, (2013).
    21 Bakaul, S. R. et al. Single crystal functional oxides on silicon. Nature Communications, 7,1, 10547, (2016).
    22 Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature, 570,7759, 87-90, (2019).
    23 Le Ster, M., Maerkl, T., Kowalczyk, P. J. & Brown, S. A. Moiré patterns in van der Waals heterostructures. Physical Review B, 99,7, 075422, (2019).
    24 Chen, X. et al. Moiré engineering of electronic phenomena in correlated oxides. Nature Physics, 16,6, 631-635, (2020).
    25 Chu, Y. H. et al. Domain Control in Multiferroic BiFeO3 through Substrate Vicinality. Advanced Materials, 19,18, 2662-2666, (2007).
    26 V. J. Morris, A. R. Kirby, A. P. Gunning, “Atomic Force Microscopy for Biologists”, Imperial College Press, London, (1999)
    27 曾賢德、果尚志,“奈米電性之掃描探針量測技術”, 物理雙月刊(廿五卷五期), (2003)
    28 王洸富,“屏蔽電荷對180度域壁成核動態機制之影響”, 成功大學, 碩士論文
    29 Smolenskii, G. A., et al., Sov. Phys. Solid State (1961) 2, 2651
    30 Fischer, P., et al., J. Phys. C: Solid State Phys. (1980) 13, 1931
    31 Chen, L. Q., Annu. Rev. Mater. Res. (2002) 32, 113
    32 A. H. MacDonald “Bilayer Graphene’s Wicked, Twisted Road”. Physics,2019-APS

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE