| 研究生: |
陳建瑋 Chen, Chien-Wei |
|---|---|
| 論文名稱: |
輸送液體的厚管之波動及能量傳遞 Energy transmission and wave propagation of a thick tube conveying fluid |
| 指導教授: |
李森墉
Lee, Sen-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 能量分布 、動脈 、厚殼 、壓力波 、衰減 |
| 外文關鍵詞: | energy distribution, thick walled, pressure wave, decay, artery |
| 相關次數: | 點閱:150 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出一個更為接近動脈血管的數學模型,描述壓力波在血管中的傳遞模態。本模型把管壁視為等向性圓柱厚殼,並將管內流體視為層流,且為不可壓縮的黏滯流體。由傳統彈性理論來描述管壁運動,而且配合流體的線動量方程以及連續條件,推導出統御方程式。由於本文是考慮波動行為,因此求解過程中,將代入波的諧和條件,最終可由特徵方程式得到三組有意義的特徵值--波數(wave number)。本文將個別討論此三組特徵值,來說明三組壓力波的傳遞模態,其中包括波速,以及波的衰減;由於在動脈的能量分布中,由管壁振動的彈性位能佔了98%,遠超過血液本身流動的2%,因此再討論此三組模態,個別在彈性管的能量分布。然而藉著不同參數的影響來更加了解這些模態的特性。
A mathematical model closer to the artery is proposed to describe the pressure wave propagating in the artery. We treat the wall as an isotropic and thick walled cylindrical shell and the fluid as an incompressible and laminar. The motion of the wall is described by the classical elasticity theory and the motion of fluid by the linear momentum equation and the continuity equation, and therefore, the governing equations are derived. We consider the propagation of harmonic waves in the governing equations. In that way, we can get three significant eigenvalues(wave number). The thesis discusses three eigenvalues individually and explains the pressure wave propagation of three modes, includes wave speed, wave decay and energy distribution. Since the elastic potential energy occupies more than 98% of mechanical energy in the arteries, which is larger than 2% of kinetic energy of flowing blood. Then, we could realize the property of these modes further by the different parameters.
[1] Harvey, W., “Movement of the Heart and Blood in Animals”, William
Fitzer, Frankurt, 1628.
[2] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 7, 1989.
[3] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 11-16,
1989.
[4] Nichols, W. W. and O’Rourke, M. F., “McDonald’s Blood Flow in
Arteries”, 3rd Edition, Philadelphia, London, 3, 1990.
[5] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 95-97,
1989.
[6] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 8-10, 1989.
[7] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 106-108,
1989.
[8] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 128-129,
1989.
[9] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 63-64,
1989.
[10] Cox, R. H., “Wave propagation through a Newtonian fluid contained within
a thick-walled. Viscoelastic tube:The influence of wall
compressibility.”, Biophys. J., v3, 317-355, 1970
[11] Mirsky, I., “Wave propagation in a viscous fluid contained in an
orthotropic elastic tube.”, Biophys. J., v7, 165-186, 1967
[12] Milnor, W. R., “Hemodynamics”, 2nd Edition, William&Wilkins, 392-396,
1989.
[13] Demiray, Hilmi “Wave in initially stressed fluid-filled thick tubes.”,
J. Biomechanics, v30, n3, 273-276, 1997.
[14] Wang, Y. Y. L. , Chang, C. C. , Chen, J. C., Hsiu, H. and Wang, W. K.,
“Pressure wave propagation in a distensible tube arterial model with
radial dilation.”, IEEE Engineering in Med. Biol. Mag., Jan., 51-56,
1997.
[15] Wang, Y. Y. L., Lia, W. C., Hsiu, H., Jan, M. Y., and Wang, W. K.,
“Effect of length on the fundamental resonance frequency of arterial
models having radial dilatation.”, IEEE Trans. On Biomedical Eng., v47,
n3, Mar., 313-318, 2000.
[16] Lamb, H., “Hydrodynamics”, 6th Edition, University Press, Cambridge,
1932.
[17] Patel, D. J., Janicki, J. S., Carew, T. E., ”Static anisotropic elastic
properties of the aorta in living dogs.”, Circ. Res., v25, 765-769, 1969.
[18] Milnor, W. R., Bergel, D. H., ”Hydraulic power associated with pulmonary
blood flow and its relation to heart rate.”, Circ. Res., v19, 767-780,
1966.
[19] Klip, W., ”Formulas for phase velocity and damping of longitudinal waves
in thick-walled viscoelastic tube.”, J. appl. physi., v38, 3745-3755,
1967.
[20] Cox, R. H., “Comparison of linearized wave propagation models for
arterial blood flow Aanalysis.”, Biophys. J., v2, 251-265, 1969
[21] Achenbach, J. D., “Wave Propagation in Elastic Solid”, North-Holland
Publishing Company Amsterdam New York Oxford, 1980
[22] Graff, Karl F., “Wave motion in elastic solids”, Ohio State University
Press, 1975.
[23] Munson, B. R., Young, D. F. and Okiishi, H., “Fundamentals of fluid
mechanics.”, 3rd Edition, John Wiley & Sons, New York, 1998.
[24] 王唯工, “氣的樂章”, 大塊文化, 台灣, 2002.
[25] 許昕, “動脈系統藉共振機制傳遞血壓波之研究”, 國立台灣大學電機工程學研究
所, 博士論文, 2001.
[26] 蔡承全, “液體輸出彈性管的波動”, 國立成功大學機械工程學研究所, 碩士論文,
2005.