簡易檢索 / 詳目顯示

研究生: 李泰玉
Li, Tai-Yu
論文名稱: 以大腸桿菌融合表現系統生產抗微生物胜肽
Production of Antimicrobial Peptides in Escherichia coli by Fusion Expression
指導教授: 鄭梅芬
Jeng, Mei-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 83
中文關鍵詞: 化學裂解融合蛋白大腸桿菌表現系統抗微生物胜肽
外文關鍵詞: chemical cleavage, E. coli expression system, fusion protein, antimicrobial peptide
相關次數: 點閱:126下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抗微生物胜肽普遍存在於各生物體中,為非專一性先天免疫系統的一環,在近年來因抗生素的濫用,造成許多具抗藥性致病性微生物的出現,而抗微生物胜肽因其獨特的生物活性及不同於傳統抗生素的作用機制,成為科學家開發研究的目標。但從天然物中萃取過程複雜且產量極少,化學合成肽類成本又過高,因此利用基因工程來生產為目前主要發展的方向。本論文利用大腸桿菌原核表現系統將抗微生物胜肽以融合蛋白B2-C-AMP 的方式在大腸桿菌中表現,再利用化學裂解反應取代蛋白酶的分解將融合蛋白中的抗微生物胜肽片段切下。從資料庫中選取三種活性有差異且長度不同之抗微生物胜肽apidaecin Ia、calcitermin 與CAP 7,將其對應核酸序列接在NNVB2基因之3' 端,並在連結處加上化學裂解切位Met(M)、Asp(D)與Asn-Gly(NG)之相對核酸密碼,得到B2-M-Cal、B2-D-Cal、B2-NG-Cal、B2-M-Api、B2-D-Api與B2-M-CAP 共六個重組基因,將其轉殖至E. coli BL21(DE3)中表現得到融合蛋白,所有融合蛋白皆以包涵體的形式表現。融合蛋白表現量為73.2~247.1 mg/L,表現量與抗微生物胜肽本身活性成負相關。在化學裂解反應方面,我們選用常用的三種化學藥劑溴化氰、蟻酸與鹽酸羥胺來做胜肽切割,比較三種化學藥劑裂解的效率,發現溴化氰之裂解效率最佳(達90%以上)。使用高效液相層析儀以C18 逆相管柱純化化學裂解產物可得到抗微生物胜肽,並做抑菌圈等分析確定其具有抗菌活性;從抑菌圈分析發現apidaecin Ia與CAP 7 皆可抑制大腸桿菌生長而形成抑菌圈,而calcitermin 可短期抑制大腸桿菌生長,且其活性與從鼻腔分泌液萃取的calcitermin 相同。本論文成功地利用大腸桿菌表現系統,以NNVB2 融合蛋白方式,生產形成包涵體的B2-抗微生物胜肽融合蛋白,其生產率比其他已發表的生產系統高,再加上使用化學裂解法,可大大降低生產成本,當可進一步發展成為大量生產抗微生物胜肽的方法。

    AMPs (antimicrobial peptides) are an important part of innate immunity in all living things. In recent years, there was increase drug resistance of pathogenic microbes to many antibiotics due to antibiotics abuse. Researchers then change their research targets to develop AMPs which have unique bioactivity and different function mechanism compared to antibiotics. Extraction of antimicrobial peptide from organisms is complicated and little amount was obtained. The cost of chemical synthesis of peptides is high. To obtain large amount of AMPs, recombinant expression of AMPs would be the best choice. In this research, we have developed an E. coli fusion expression system to produce AMPs. NNVB2 was used as the fusion partner. The coding sequence of AMPs was cloned into pET29b(+) vector and expression as a B2-C-AMP (C presents a chemical cleavage site) fusion protein in E coli. Three different chemical cleavage reagents, cyanogen bromide, formic acid and hydroxylamine were used instead of protease to cleave off AMPs from fusion proteins, and the use of chemical cleavage reagents was cost less. Three AMPs, apidaecin Ia, calcitermin and CAP 7 (expression as fusion protein B2-M-Cal, B2-D-Cal, B2-NG-Cal, B2-M-Api, B2-D-Api and B2-M-CAP) have been successfully expressed using this expression system and the resulting expression level of fusion proteins reached up to 73.2~ 247.1 mg per liter cell culture. All fusion proteins were expressed as inclusion bodies in E. coli. 90% AMPs can be cleaved off from fusion protein by cyanogen bromide and 46% by formic acid. No cleavage product was found treated with hydroxylamine. The antimicrobial activities of the AMPs, purified by C18 reverae-phase column FPLC, were measured and are identical to that of the native extracted peptides. Recombinant apidaecin Ia and CAP 7 both inhibited the growth of E. coli and clear inhibition zones can be seen in inhibition zone assay. Recombinant calcitermin inhibited the growth of E. coli temporarily similar to native extracted calcitermin. In this research, we have developed successfully a high production system of antimicrobial peptides using NNVB2 as fusion partner. E. coli expression system that expression of antimicrobial peptides by a fusion partner reinforcing formation of inclusion bodies can increase the level of productions.

    目錄 中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 Ⅴ 縮寫表 Ⅵ 目錄 Ⅶ 圖目錄 Ⅸ 表目錄 XI 附錄目錄 XII 第一章、緒論 1 第一節、抗微生物胜肽概論 1 第二節、重組抗微生物胜肽的表現 6 第三節、論文中所使用之抗微生物胜肽的簡介 9 第四節、神經壞死病毒非結構蛋白質B2的簡介 10 第五節、化學裂解反應 11 第六節、研究動機與目的 12 第二章、材料與方法 14 第一節、實驗材料 14 第二節、儀器 15 第三節、實驗方法 16 第三章、實驗結果 34 第一節、重組基因表現載體之建構 34 第二節、融合蛋白表現、分子量鑑定與包涵體的純化 35 第三節、化學裂解與純化 36 第四節、抗微生物胜肽活性分析 39 第四章、討論 41 第一節、重組基因表現載體之建構 41 第二節、融合蛋白的表現 41 第三節、化學裂解 41 第四節、抗微生物胜肽純化與活性分析 42 第五節、各種抗微生物胜肽表現方法成果的比較 43 第六節、結論 44 第五章、參考文獻 45 圖 51 表 73 附錄 76 自述 83

    邱子庭 分子選殖與草蝦抗微生物胜肽特性之研究。國立海洋大學水產養殖學系碩士論文。基隆 (2001)。

    陳慶三 抗蟲蛋白質。科學發展 392:12-15。(2005)

    彭及忠 抗菌蛋白在生物科技上的應用。植物病理學會刊 15:69-75。(2006)

    黃偉婷 草蝦抗微生物胜肽之基因表現與抑微生物作用。國立海洋大學 生物科技研究所碩士論文。基隆 (2003)。

    歐明昌 石斑魚神經壞死病毒B2基因功能分析及檢測方法開發。成功大學 生物科技研究所碩士論文。台南 (2006)。

    蘇郁清 基因選殖神經壞死病毒非結構基因B2及其功能之探討。成功大學 生物科技研究所碩士論文。台南 (2005)。

    Andersons D., Engstrom A., Josephson S., Hansson L. and Steiner H. Biologically active and amidated cecropin produced in a baculovirus expression system from a fusion construct containing the antibody binding part of protein A. Biochem. J. 280: 219-224. (1991)

    Andres E. and Dimarcq J. L. Cationic antimicrobial peptides: update of clinical development. J. Intern. Med. 255(4):519-20. (2004)

    Blodgett J. K., Loudon G. M., and Collinslb K. D. Specific cleavage of peptides containing an aspartic acid (β-hydroxamic acid) residue. J. Am. Chem. Soc. 107:4305-4313. (1985)

    Brogden K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 3(3):238-50. (2005)

    Callaway J. E., Lai J., Haselbeck B., Baltaian M., Bonnesen S. P., Weickmann J., Wilcox G. and Lei S. P. Modification of the C terminus of cecropin is essential for broad-spectrum antimicrobial activity. Antimicrob. Agents Chemother. 37:1614-1619. (1993)

    Capparelli R., Ventimiglia I., Palumbo D., Nicodemo D., Salvatore P., Amoroso M. G. and Iannaccone M. Expression of recombinant puroindolines for the treatment of staphylococcal skin infections (acne vulgaris). J. Biotechnol. 20;128(3):606-14. (2007)

    Casteels-Josson K., Capaci T., Casteels P. and Tempst P. Apidaecin multipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response. EMBO J. 12(4):1569-78. (1993)

    Cole A. M., Kim Y. H., Tahk S., Hong T., Weis P., Waring A. J. and Ganz T. Calcitermin, a novel antimicrobial peptide isolated from human airway secretions. FEBS Lett. 504(1-2):5-10. (2001)

    Daniel R. M., Dines M. and Petach H. H. The denaturation and degradation of stable enzymes at high temperatures. Biochem. J. 317(Pt 1):1-11. (1996)

    Datar R. V., Cartwright T. and Rosen C. G. Process economics of animal cell and bacterial fermentations: A case study analysis of tissue plasminogen activator. Biotechnology 11: 349-357. (1993)

    Ganz T. Antimicrobial polypeptides. J. Leukoc. Biol. 75(1):34-8. (2004)

    Geiger T. and Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J. Biol. Chem. 262(2):785-94. (1987)

    Haught C., Davis G. D., Subramanian R., Jackson K. W. and Harrison R. G. Recombinant production and purification of novel antisense antimicrobial peptide in Escherichia coli. Biotechnol. Bioeng. 57(1):55-61. (1998)

    Hellers M., Gunne H. and Steiner H. Expression and post-translational processing of preprocecropin A using a baculovirus vector. Eur. J. Biochem. 199:435-439. (1991)

    Ingham A. B. and Moore R. J. Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol Appl Biochem. 47(Pt 1):1-9. (2007)

    Kaiser R. and Metzka L. Enhancement of cyanogen bromide cleavage yields for methionyl-serine and methionyl-threonine peptide bonds. Anal. Biochem. 266(1):1-8. (1999)

    Larrick J. W., Hirata M., Zheng H., Zhong J., Bolin D., Cavaillon J. M., Warren H. S. and Wright S. C. A novel granulocyte-derived peptide with lipopolysaccharide-neutralizing activity. J. Immunol. 152(1):231-40. (1994)

    Lee J. H., Kim J. H., Hwang S. W., Lee W. J., Yoon H. K., Lee H. S. and Hong S. S. High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem. Biophys. Res. Commun.
    277(3):575-80. (2000)

    Li A., Sowder R. C., Henderson L. E., Moore S. P., Garfinkel D. J. and Fisher R. J. Chemical cleavage at aspartyl residues for protein identification. Anal. Chem. 73(22):5395-402. (2001)

    Li B. C., Zhang S. Q., Dan W. B., Chen Y. Q. and Cao P. Expression in Escherichia coli and purification of bioactive antibacterial peptide ABP-CM4 from the Chinese silk worm, Bombyx mori. Biotechnol. Lett. 29(7):1031-6. (2007)

    Lu G. and Moriyama E. N. Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform. 5(4):378-88. (2004)

    Metlitskaia L, Cabralda J. E., Suleman D., Kerry C., Brinkman J., Bartfeld D. and Guarna M. M. Recombinant antimicrobial peptides efficiently produced using novel cloning and purification processes. Biotechnol. Appl. Biochem. 39(Pt 3):339-45. (2004)

    Nelson D. L. and Cox M. M. Lehninger Principles of Biochemistry. Worth. United States of America. 127-128; 890. (2000)

    Park H. B., Pyo S. H., Hong S. S. and Kim J. H. Optimization of the hydroxylamine cleavage of an expressed fusion protein to produce a recombinant antimicrobial peptide. Biotechnology Letters 23:637-641. (2001)

    Pazgier M. and Lubkowski J. Expression and purification of recombinant human alpha-defensins in Escherichia coli. Protein Expr. Purif. 49(1):1-8. (2006)

    Peng L., Xu Z., Fang X., Wang F., Yang S. and Cen P. Preferential codons enhancing the expression level of human beta-defensin-2 in recombinant Escherichia coli. Protein Pept Lett. 11(4):339-44. (2004)

    Reichhart J. M., Petit I., Legrain M., Dimarcq J. L., Keppi E., Lecocq J. F., Hoffmann J. A. and Achstetter T. Expression and secretion in yeast of active insect defensin, an inducible antibacterial peptide from the fleshlfy Phormia terranovae. Invertebr. Reprod. Dev. 21: 15-24. (1992)

    Sanchez J. F., Hoh F., Strub M. P., Strub J. M., Van Dorsselaer A., Lehrer R., Ganz T., Chavanieu A., Calas B., Dumas C. and Aumelas A. Expression, purification, crystallization and preliminary X-ray analysis of the cathelicidin motif of the protegrin-3 precursor. Acta Crystallogr D Biol Crystallogr. 57(Pt11):1677-9. (2001)

    Selsted M. E., Szklarek D. and Lehrer R. I.. Purification and antibacterial activity of antimicrobial peptides of rabbit granulocytes. Infect. Immun. 45(1):150-4. (1984)

    Shai Y. and Oren Z. From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22(10):1629-41. (2001)

    Steiner H., Hultmark D., Engstrom A., Bennich H. and Boman H. G. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292(5820):246-8. (1981)

    Tossi A., Scocchi M., Skerlavaj B. and Gennaro R.. Identification and characterization of a primary antibacterial domain in CAP18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett. 339(1-2):108-12. (1994)

    van't Hoff W., Veerman E. C., Helmerhorst E. J. and Amerongen A. V. Antimicrobial peptides: properties and applicability. Biol. Chem. 382(4):597-619. (2001)

    Wei Q., Kim Y. S., Seo J. H., Jang W. S., Lee I. H. and Cha H. J. Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coli. Appl. Environ. Microbiol. 71(9):5038-43. (2005)

    Wilkins M. R., Gasteiger E., Bairoch A., Sanchez J. C., Williams K. L., Appel R. D. and Hochstrasser D. F. Protein identification and analysis tools in the ExPASy server. Methods Mol Biol. 112:531-52. (1999)

    William H., Saul A. T., William T. V. and Brian P. F. Numerical Recipes in C:The Art of Scientific Computing. Cambridge University Press. England. 616. (1992)

    Worobo R. W., Van Belkum M. J., Sailer M., Roy K. L., Vederas J. C. and Stiles M. E. A signal peptide secretion-dependent bacteriocin from Carnobacterium divergens. J Bacteriol. 177(11):3143-9. (1995)

    Xu X., Jin F., Yu X., Ren S., Hu J. and Zhang W. High-level expression of the recombinant hybrid peptide cecropinA(1-8)-magainin2(1-12) with an ubiquitin fusion partner in Escherichia coli. Protein Expr. Purif. In press. (2007)

    Xu Z., Zhong Z., Huang L., Peng L., Wang F. and Cen P. High-level production of bioactive human beta-defensin-4 in Escherichia coli by soluble fusion expression. Appl Microbiol Biotechnol. 72(3):471-9. (2006)

    Yarus S., Rosen J. M., Cole A. M. and Diamond, G.. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc. Natl. Acad. Sci. USA 93: 14118-14121. (1996)

    Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 415(6870):389-95. (2002)

    Zhang L. and Falla T. J. Antimicrobial peptides: therapeutic potential. Expert Opin. Pharmacother. 7(6):653-63. (2006)

    下載圖示 校內:2008-09-12公開
    校外:2008-09-12公開
    QR CODE