簡易檢索 / 詳目顯示

研究生: 吳俊霆
Wu, Chun-Ting
論文名稱: 於各技術情境下評估未來小客車之環境衝擊
Future Environmental Impacts from Personal Vehicles with Various Technology Scenarios
指導教授: 福島康裕
Yasuhiro Fukushima
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 87
中文關鍵詞: 小客車環境衝擊混合動力電動車Gompertz functionpopulation balance modelWeibull distribution
外文關鍵詞: personal vehicles, environmental impacts, hybrid electric vehicles, Gomepertz function, population balance model, Weibull distribution
相關次數: 點閱:96下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 移動汙染源為空氣污染主要的排放源之一,然而,其所消耗之能源與伴隨排放之溫室氣體也不容忽視。隨著經濟發展,小客車數量逐年上升。伴隨著小客車產生的環境衝擊也逐年增加。越來越多的研究致力於減少這些環境衝擊(能源消耗、溫室氣體排放及空氣汙染)。例如:混合動力電動車(Hybrid Electric Vehicles, HEVs),其不但降低耗油量也大大削減氣體排放量。這樣類型的新技術車種,在未來市場中將占有一席之地,但目前尚無模式為推估未來的車子數量以及車齡分布,以評估未來新技術車種所造成的環境衝擊以利制定政策。
    本項研究著重於建立一模式以評估未來小客車造成之環境衝擊。模式包含為: 1)推估未來的車輛數;2) 估算未來環境衝擊因子,環境衝擊因子包括耗油率、車行里程以及空氣汙染物之排放係數;3)估算未來環境衝擊;4)新技術車輛的導入。
    Gompertz function被選用來推估未來車輛持有率;而PBM以及Weibull distribution被用來計算車輛整體的年齡分配;未來的環境衝擊因子的推估則是考量了技術提升以及車輛引擎劣化率所造成之影響。因此,未來小客車所產生之環境衝擊(耗油量、溫室氣體排放以及空氣汙染物排放量)可藉由這三部分的計算而得。此外,為了考慮新技術車輛(如:HEVs)的引進將會對環境衝擊產生多少變化,因此設立了不同的HEVs導入市場的情境。由結果顯示,HEVs 的導入將可大幅減少環境衝擊。。
    而為了加強環境衝擊削減量,特別設立一情境制定政策於2025年起汰換掉市場上年齡大於20歲的車輛,以增加新HEVs的數量。然而由結果顯上,此情境對於整體環境衝擊的削減幅度不大。
    總結以上,用於評估未來小客車造成之環境衝擊之模式已經建立。於此模式中,無論車輛技術如何發展、引擎劣化率如何變化、新技術車輛如何導入市場,其所造成之環境衝擊均可由此模式評估。

    The personal vehicles have been an important source of air pollution and associated health risks in populated urban areas and around arterial roadways. Greenhouse gas emission and fossil resource consumption is also important impact categories of major concern. Efforts have been paid to develop technologies that could reduce these impacts e.g. hybrid electric vehicles (HEVs) is expected to significantly reduce fuel consumption and pollutants. However, it takes time to obtain the effects of environmental impacts reductions (such as fuel consumption, GHG emission and air pollution), while the new technology and new vehicles are introduced into the market. Besides, the fuel economy and gas emission factors are various for each vehicles in every year. The model for analyzing the future environmental impacts from personal vehicles while introducing new technology is still not constructed yet.
    This study aims to construct a model for evaluating environmental impacts from the future personal vehicles by considering technology improvements, engine degradation and new type vehicles. The model includes: 1) estimation of the numbers of vehicles in the future, 2) estimations of the factors, which are fuel economy, vehicle travelled kilometers (VKTs) and gas emission factors, 3) calculation of environmental impacts, and 4) introduction of new type vehicles.
    In the model, the Gompertz function is used for estimation the future car ownership; and the population balance model (PBM) and Weibull distribution are applied to determine the lifetime distribution of vehicle. The future factors are estimated by considering the technology improvement and engine degradations. Therefore, the environmental impacts (such as, fuel consumption, GHG emission and air pollution) can be calculated. Besides, using different scenarios to describe the introduction of HEVs in the market and then taking the scenarios into my model, the environmental impacts reductions can be acquired.
    Furthermore, in order to enhance to environmental impacts reductions, an earlier retirement policy is applied in 2025 to discard the elder vehicles, which are over 20 years, and to increase the portion of HEVs in the new cars. The results, however, show that the reductions do not change a lot compared to the scenarios.
    To conclude, the model for estimating the environmental impacts from personal vehicles in the future is established. By using this model, no matter how the technology improves and engine degrades and how the new type vehicles introduce, the environmental can be obtained.

    Abstract i 摘要 iii Acknowledgement v Table of contents vii Figure index ix Table index xiii Chapter 1 Introduction 1 1.1 Transportation 1 1.1.1 Preface 1 1.1.2 The Case in Taiwan 3 1.2 New Technologies 7 1.3 Motivation 8 1.4 Objective 9 Chapter 2 Literature Review 11 2.1 Estimations of Number of vehicles in the future 11 2.2 Estimation for Life Time Distribution of Vehicles 13 2.3 New Technologies 14 2.4 Environmental Impacts associated with vehicles 16 2.5 HEVs chosen for demonstration 19 2.6 Summary 20 Chapter 3 Methodology 21 3.1 Gompertz Function 25 3.2 Weibull Distribution 28 3.3 Population Balance Model (PBM) 30 3.4 Factors Estimations 31 3.5 Environmental Impacts 32 3.5.1 Fuel consumption 32 3.5.2 GHG emission 32 3.5.3 Air pollution 32 3.6 Scenarios for new type vehicle introductions 33 3.7 Sensitivity analysis 34 Chapter 4 Results and Discussions 37 4.1 Case in Taiwan 37 4.1.1 Number of possessed vehicles 37 4.1.2 The lifetime distribution of vehicles 40 4.2 Estimated Factors 44 4.3 The future environmental impacts from conventional vehicles 51 4.4 HEVs introduction 54 4.4.1 Different scenarios for introduction HEVs 54 4.4.2 The estimated factors for HEVs 55 4.4.3 The environmental impacts while HEVs introduction 59 4.5 Earlier retirement for elder vehicles 64 4.6 Sensitivity analysis 70 Chapter 5 Conclusions 75 Chapter 6 Suggestions 77 Reference 79 Appendix A The detail of parameter settings for sensitivity analysis 83

    Anderson, F. M., H. Larsen, et al. (2008). Modelling and Forcasting the Number of ELVs in 25 EU Member States. International Colloquium. Turin, Italy, GERPISA.
    Bureau of Energy, M. o. E. A. (2009). Energy Statistics Handbook Taipei, Bureau of Energy, Ministry of Economic Affairs,: 180.
    Bureau of Energy, M. o. E. A. (2010). 99~108年長期負載預測與電源開發規劃報告. Taipei, Bureau of Energy, Ministry of Economic Affairs.
    Bureau of Energy, M. o. E. A. (2010). Energy Balance Sheet.
    Chapman, L. (2007). "Transport and climate change: a review." Journal of Transport Geography 15(5): 354-367.
    Chen, J.-W. (2009). Exploring greenhouse gas emission reduction potential of microalgae-derived bio-fuel production process. Master, National Cheng Kung University.
    Council for Economic Planning and Development (2010). 1974年至2060年人口金字塔. Taipei, Conuncil for Economic Planning and Development,.
    Dargay, J. and D. Gately (1997). "Vehicle ownership to 2015: Implications for energy use and emissions." Energy Policy 25(14-15): 1121-1127.
    Dargay, J., D. Gately, et al. (2007). "Vehicle ownership and income growth, worldwide: 1960-2030." Energy Journal 28: 143-170.
    David A. Hensher and Kenneth J. Button, Eds. (2003). Handbook of transport and the environment Elsevier.
    Demirdoven, N. and J. Deutch (2004). "Hybrid cars now, fuel cell cars later." Science 305(5686): 974-976.
    Erjavec, J. and J. Arias (2007). Hybrid, electric, and fuel-cell vehicles, Thomson Delmar Learning.
    Fontaras, G., P. Pistikopoulos, et al. (2008). "Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles." Atmospheric Environment 42(18): 4023-4035.
    Funazaki, A., K. Taneda, et al. (2003). "Automobile life cycle assessment issues at end-of-life and recycling." Jsae Review 24(4): 381-386.
    Grahn, M., C. Azar, et al. (2009). "Fuel and Vehicle Technology Choices for Passenger Vehicles in Achieving Stringent CO2 Targets: Connections between Transportation and Other Energy Sectors." Environmental Science & Technology 43(9): 3365-3371.
    Hatayama, H., I. Daigo, et al. (2010). "Outlook of the World Steel Cycle Based on the Stock and Flow Dynamics." Environmental Science & Technology 44(16): 6457-6463.
    Hendrickson, C. T., L. B. Lave, et al. (2006). A Life Cycle Analysis of a Midsize Passenger Car. Environmental life cycle assessment of goods and services : an input-output approach. Washington, DC, Resources for the Future.
    Hsueh, Y. and Y. Fukushima (2010). "Illustration of Flow, Stock and Recycling of Steel in Taiwan." 鉄と鋼 96(3): 129-137.
    Intergovernmental Panel on Climate Change (2010). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2.
    Lave, L., H. MacLean, et al. (2000). "Life-Cycle Analysis of Alternative Automobile Fuel/Propulsion Technologies." Environmental Science & Technology 34(17): 3598-3605.
    Lee, C.-M. (2003). Energy Demand Forecast of the Transportation Sector. Institute of Transportation. Taipei, Minstry of Transportation and Communications,.
    Lin, J.-T. (2007). Evaluation of greenhouse gas emission reduction potentials in car recycling system - A case study in Taiwan. Master, National Cheng Kung University.
    Lu, I. C. (2008). Decomposition and trend analyses of energy consumption and CO2 emission from the road traffic system in Taiwan. Ph.D, National Cheng Kung Unversity.
    M. Andersen, Helge V. Larsen, et al. (2007). "A European model for the number of End-of-Life Vehicles." International Journal of Automotive Technology and Management 7(4): 13.
    Ministry of Transportation and Communication (2009). 交通統計年鑑. Taipei.
    Ou, X., X. Zhang, et al. (2010). "Scenario analysis on alternative fuel/vehicle for China's future road transport: Life-cycle energy demand and GHG emissions." Energy Policy 38(8): 3943-3956.
    Taiwan Environmental Protection Agency (2007). Taiwan Emission Data System 7.0.
    Taiwan Environmental Protection Agency (2010). 交通工具空氣污染物排放標準.
    Taiwan Environmental Protection Agency. (2011). "移動汙染源管制網." 2011, from http://mobile.epa.gov.tw/oilimprovement_3.aspx.
    U.S. Department of Energy, U. S. E. P. A. (2011). "Fuel Economy." 2011, from http://www.fueleconomy.gov/.
    Wikipedia. (2011). "Logistic Function." 2011, from http://en.wikipedia.org/wiki/Logistic_function.
    World Business Council for Sustainable Development (2004). Mobility 2030: Meeting the Challenges to Sustainability. The Sustainable Mobility Project: 180.
    Yan, X. (2009). "Energy demand and greenhouse gas emissions during the production of a passenger car in China." Energy Conversion and Management 50(12): 2964-2966.

    下載圖示 校內:2014-08-31公開
    校外:2014-08-31公開
    QR CODE