| 研究生: |
王捷 Wang, Jei |
|---|---|
| 論文名稱: |
少層AA和ABC堆疊石墨在電場下的電子和光學性質 Electronic & Optical Properties of few-layer AA- and ABC-stacked graphites in an electric field |
| 指導教授: |
林明發
Lin, Min-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 24 |
| 中文關鍵詞: | 石墨 、能帶 、電子性質 、吸收 |
| 外文關鍵詞: | graphite, energy band, electronic properties, absorption |
| 相關次數: | 點閱:66 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文之中,我們以緊束模型討論了在外加垂直於石墨層的電場下,少層AA及ABC兩種不同堆疊石墨系統的電子和光學性質。這些不同堆疊石墨系統的電子和光學性質將隨著堆疊序列、石墨的層數、鉛直方向(垂直石墨面)的靜電場強度而有著特性上的變化。不論有無電場的作用,在低能附近的AA堆疊石墨吸收光譜都是呈現出肩狀的跳躍結構。在無電場存在時,N層ABC堆疊石墨的吸收光譜有著不一樣的特徵,其呈現出尖峰和跳躍結構。所施加的電場對能帶結構產生影響,像是變化了態能量,改變了副能帶間的空間,產生震盪能帶而且增加了能帶邊緣態。因此,電場調制了吸收光譜,包括產生了新的峰結構,改變了峰的位置和峰的高度。更進一步地,我們可以預期峰結構的頻率很顯著地決定於層數和電場強度。最重要的是,這些預測出的吸收光譜和相關的電子性質可以由光學量測來証實。
Optical properties of the AA- and ABC-stacked few-layer graphites
under application of the electric field (F), perpendicular to the layers, is
explored through the gradient approximation. They are closely related to
the geometric structure (layer number, interlayer interactions and stacking
sequences) and the field strength. In the absence or presence of an electric
field, the low-energy absorption spectra of the AA-stacked few-layer
graphites exhibit the jumping structures. In the absence of an electric field
, the ABC-stacked few-layer graphites show the spectra with the different
feature, including the jumping structures and sharp peaks. The application
of an electric field, F, influences the energy dispersions, e.g., the change
of band feature and subband spacing, the production of oscillating bands ,
and the increases of the band-edge states. As a result, F modifies the
absorption spectra, including the generation of new peaks, the change of
peak position and peak height. Moreover, the frequency of peak is
predicted to be strongly dependent on the layer number and the field
strength. Above all, the predicted absorption spectra and the associated
electronic properties could be verified by the optical measurements.
1 R. Satio, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press (1998).
2 Rocha CG, Pacheco M, Barticevic Z, Latge A. Phys. Rev. B 70, 233402 (2004)
3 F. L. Shyu, Phys. Rev. B 72, 045424 (2005).
4 Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS. Phys. Rev.B 54, 17954 (1996).
5 B. T. Kelly. Physics of graphite. Applied Science: London, Englewood, N.J., 1981.
6 J. C. Charlier, J.P. Michenaud, and X. Gonze, Phys. Rev.B 46, 4531 (1992).
7 J. C. Charlier, X. Gonze, and J. P. Michenaud, Phys. Rev. B 43, 4579 (1991).
8 J. C. Charlier, J.P. Michenaud, P. Lambin. Phys. Rev. B. 46, 4540 (1992).
9 J. C. Charlier, X. Gonze, and J. P. Michenaud, Carbon 32, 289 (1994).
10 C. Villaquiran, M. Gomez, N. Luiggi. Phys. Stat. solidi b 220, 691 (2000).
11 R. C. Tatar, and S. Rabii, Phys. Rev. B 25, 4126 (1982).
12 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
13 J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen, Nano. Lett. 5, 287 (2005).
14 Y. B. Zhang, J. P. Small, W. V. Pontius, and P. Kim, Appl. Phys. Lett. 86, 073104 (2005).
15 Y. H. Wu, B. J. Yang, B. Y. Zong, H. Sun, Z. X. Shen, and Y. P. Feng, J. Mat. Chem. 14, 469 (2004).
16 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva , et al. Nature 438, 197 (2005).
17 Y. B. Zhang, Y. W. Tan, H. LStormer, P. Kim. Nature 438, 201 (2005).
18 E. McCann, V. I. Fal’ko. Phys. Rev. Lett. 96, 086805 (2006).
19 V. P. Gusynin, S. G. Sharapov. Phys. Rev. Lett. 95, 146801 (2005).
20 J. H. Ho, C. P. Chang, M. F. Lin. Phys. Lett. A 352, 446 (2006).
21 J. H. Ho, C. P. Chang, R. B. Chen, M. F. Lin. Phys. Lett. A, (2006) (doi:10.1016/j.physleta.2006.04.077).
22 C. L. Lu, C. P. Chang, Y. C. Huang, J. M. Lu, C. C. Hwang, M. F. Lin, J. of Phys.:Conden. Matt. (2006) (accepted)
23 C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, M. F. Lin. Phys. Rev. B 73 144427 (2006).
24 J. G. Johnson, and G. Dresselhaus. Phys. Rev. B 7, 2275 (1973).
25 F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, Phys. Rev. B 67, 045405 (2003).
26 A. Gruneis, R. Saito, G. Samsonidze, T. Kimura, M. A. Pimenta, and A. Jorio, A. G. Souza Filho, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 67 165402 (2003).
27 J. Jiang, R. Saito, A. Gruneis, G. Dresselhaus, and M. S. Dresselhaus, Carbon 42, 3169 (2004).
28 M. Pacheco, Z. Barticevic, C. G. Rocha, A. Latge. J. Phys.: Cond. Mat. 17, 5839 (2005).
29 Y. H. Kim, K. J. Chang. Phys. Rev. B 64, 153404 (2001).
30 M. Araidai, Y. Nakamura, and K. Watanabe, Phys. Rev. B 70, 245410 (2004).
31 C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. K. Fang, and M. F. Lin, Carbon 42, 2975 (2004).
32 R. Ahuja, S. Auluck, J. M. Wills, M. Alouani, B. Johansson, and O. Eriksson, Phys. Rev. B 55, 4999 (1997).