簡易檢索 / 詳目顯示

研究生: 黃桐科
Huang, Tung-Ke
論文名稱: 多模態固定損耗椎狀波導設計與模擬
Design and Simulation of Multimode Constant Loss Tapers
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 62
中文關鍵詞: 椎狀波導歐拉-拉格朗日方程式絕緣層覆矽
外文關鍵詞: Waveguide taper, Euler-Lagrange equation, Silicon on insulator
相關次數: 點閱:73下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究將歐拉-拉格朗日方程式(Euler-Lagrange Equation)的物理特性,運用到多模態椎狀波導(multimode waveguide taper)設計上,並用數值模擬進行分析。首先,我們會介紹歐拉-拉格朗日方程式的理論,說明如何將此理論運用到設計椎狀波導上。再來利用已知理論基礎,透過數值模擬方法,時域有限差分法(finite difference time domain, FDTD)和有限差分本徵模態方法(finite difference eigenmdoe, FDE)來進行椎狀波導設計的工作。最後透過時域有限差分法驗證設計出來的多模態固定損耗椎狀波導(multimode constant loss taper, MMCLT)的特性,寬度0.5-10μm的多模態固定損耗椎狀波導,在長度220μm時,具有99%以上的穿透率、偏振不相關性(polarization independence)和容忍度(robustness)。相較於其他常見的椎狀波導,長度縮短70μm,所以此椎狀波導將可利於縮小未來光纖耦合元件的尺寸。

    In this thesis, we devoted our effort to design a new waveguide taper which is called the multimode constant loss taper(MMCLT). According to Euler-Lagrange equation, if we can fix the step loss of a taper at a constant, we’ll be able to get a taper has lowest loss. This taper was designed to reduce the loss which is caused by mode conversion to high order modes or radiation modes. The width of the taper is from 0.5μm to 10μm. The substrate’s width is 20μm. The model is based the on silicon-on-insulator(SOI) material. We use the two dimensional finite difference time domain (2D FDTD) method and the finite difference eigenmode (FDM) to find the width of each propagation step to make the step loss constant. We also use the 2D FDTD method to demonstrate the performance of the MMCLT. We find that the MMCLT can achieve a transmission of 99% at a shorter length than the other tapers, such as linear, parabolic and exponential tapers. And as the length of the MMCLT reaches 220μm, it is polarization-independent and robustness.

    摘要 i Extended Abstract ii 誌謝 vii 目錄 viii 圖目錄 x 表目錄 xiv Chapter 1 序論 1 1.1 研究動機 1 1.2 介紹 2 1.3 論文的組織 4 Chapter 2 理論分析 5 2.1 固定損耗椎狀波導(Constant loss taper) 5 2.2 椎狀波導絕熱條件(Adiabatic condition of waveguide taper) 12 2.3 數值模擬方法 15 Chapter 3 模擬結果與討論 28 3.1 設計、模擬和分析二維多模態固定損耗椎狀波導 28 3.2 多模態固定損耗椎狀波導與其他椎狀波導比較(寬度0.5-2μm) 37 3.3 伸縮長度對多模態固定損耗椎狀波導的影響 41 3.4 多模態固定損耗椎狀波導與其他椎狀波導比較(寬度0.5-10μm) 45 3.5 使用基本橫向電場模態設計多模態固定損耗椎狀波導 51 Chapter 4 結論與未來展望 58 4.1 結論 58 4.2 未來展望 59 參考文獻 60

    1 Isa Kiyat, Atilla Aydinli, and Nadir Dagli, "A compact silicon-on-insulator polarization splitter", IEEE Photonics Technology Letters, vol. 17, no. 1, pp.100-102, 2005.
    2 Katsunari Okamoto, "Wavelength-division-multiplexing devices in thin SOI: advances and prospects", IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, pp.1-10, 2014.
    3 Huiye Qiu, Yuxia Su, Liangjie Chen, and Ping Yu, "Asymmetric Bragg gratings based on a multimode SOI strip waveguide", Asia Communications and Photonics Conferene (ACP), pp.AF2A.50, 2016.
    4 Hideaki Okayama, Yosuke Onawa, Daisuke Shimura, Hiroki Yaegashi, and Hironori Sasaki, "Silicon wire waveguide TE0/TE1 mode conversion Bragg grating with resonant cavity section", Optics Express, vol. 25, no. 14, pp.16672-16680, 2017.
    5 Paul-Henri Tichit, Shah Nawaz Burokur, and André de Lustrac, " Waveguide taper engineering using coordinate transformation technology", Optics Express, vol.18, no.3, pp.767-772, 2010.
    6 Yujin Liu, Xi Wang, Ying Dong, and Xiaohao Wang, "Compact and efficient large cross-section SOI rib waveguide taper optimized by a genetic algorithm", Proc. SPIE 10244, International Conference on Optoelectronics and Microelectronics Technology and Application, vol. 1024424, pp.1024424, 2017.
    7 Purnima Sethi, Anubhab Haldar, and Shankar Kumar Selvaraja1, "Ultra-compact low-loss broadband waveguide taper in silicon-on-insulator", Optics Express, vol. 25, no. 9, pp.10196-10203, 2017.
    8 Alexandre Horth, Pavel Cheben, Jens H. Schmid, Raman Kashyap, and Nathaniel J. Quitoriano, "Ideal, constant-loss nanophotonic mode converter using a Lagrangian approach", Optics Express, vol.24, no.6, pp.6680-6688, 2016.
    9 Metin Ȍz and Robert R. Krchnavek, " Power loss analysis at a step discontinuity
    of a multimode optical waveguide", Journal of Lightwave Technology, vol.16, no.12, pp.2451-2457, 1998.
    10 B, M. Azizur Rahman, and J. Brian Davies, "Analysis of optical waveguide discontinuities", Journal of Lightwave Technology, vol. 6, no, 1, pp.52-57, 1988.
    11 P. G. Suchoski, Jr., and V. Ramaswamy, "Exact numerical technique for the analysis of step discontinuities and tapers in optical dielectric waveguides", JOSA, vol.3, no.2, pp.194-203, 1986.
    12 T. E. Rozzi, " Rigorous analysis of the step discontinuity in a planar dielectric waveguide, IEEE Transactions on Microwave Theory and Techniques, vol.MTT-26, no.10, pp.738-746, 1978.
    13 Eugene Butkov, "Mathematical physics", Addison-Wesley Publishing Company, United States of America, pp.553-560, 1968.
    14 Yutaka Nishiyama, "The brachistochrone curve: the problem of quickest descent", International Journal of Pure and Applied Mathematics, vol.82, no.3, pp.409-419, 2013.
    15 Alexandre Horth, "Constant-loss taper and low-index waveguidefor silicon photonics applications", Department of Electrical and Computer Engineering Faculty of Engineering McGill University, 2015
    16 Lorenzo Pavesi, and David J. Lockwood, "Silicon photonics", Springer, Germany, pp.279-284, 2004.
    17 Kehinde Latunde-Dada, and Frank Payne, "An optimal design strategy for MMI splitters", European Conference on Integrated Optics, 2007.
    18 Katsunari Okamoto, "Fundamentals of optical waveguides", Elsevier, United States of America, pp.329-331, 2006.
    19 Clifford R. Pollock ,and Michal Lipson, "Integrated photonics", Spring Science+Business Media, United Stated of America, pp.220-225, 2003.
    20 P. Bienstman, and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers", Optical and Quantum Electronics, vol.33, no.4-5, pp.327-341, 2001.
    21 Dominic F.G. Gallagher, Thomas P. Felici, "Eigenmode expansion methods for
    simulation of optical propagation in photonics - Pros and Cons", Proc. SPIE, Integrated Optics: Devices, Materials, and Technologies VII, vol.4987, pp.69-83, 2003.
    22 Kane S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media", IEEE Transactions on Antennas and Propagation, vol.14, no,3, pp.302-307, 1966.
    23 Wenhua Yu, and Raj Mittra," A conformal finite difference time domain
    technique for modeling curved dielectric surfaces", IEEE Microwave and Wireless Components Letters, vol. 11, no. 1, pp.25-27, 2001.
    24 Ahmad Mohammadi, Hamid Nadgaran, and Mario Agio, "Contour-path effective permittivities for the two-dimensional finite-difference time-domain method", Optics Express, vol.13, no.25, pp.10367-10381, 2005.
    25 Yan Zhao, and Yang Hao, " Finite-difference time-domain study of guided
    modes in nano-plasmonic waveguides", IEEE Transactions on Antennas and Propagation, vol. 55, no. 11, pp.3070-3077, 2007.
    26 Allen Taflove, and Susan C. Hagness, "Computational electrodynamics: the finite-difference time-domain method, third edition", Artech House, United States of America, pp.107-164, 2005.
    27 Allen Taflove, and Susan C. Hagness, "Computational electrodynamics: the finite-difference time-domain method, third edition", Artech House, United States of America, pp.80-85, 2005.
    28 P. Thoma, and T. Weiland, "A consistent subgridding scheme for the finite difference time domain method", International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol.9, pp.359-374, 1996.
    29 Dominic Gallagher, and Photon Design, " Photonic CAD matures", IEEE LEOS NewsLetter, pp.8-14, 2008.
    30 Alexandre Horth, Raman Kashyap, and Nathaniel J. Quitoriano, "2D constant-
    loss taper for mode conversion", Physics and Simulation of Optoelectronic Devices XXIII, vol.9357, pp.93571S, 2015.
    31 Dietrich Marcuse, "Radiation losses of tapered dielectric slab waveguides", Bell Labs Technical Journal, vol.49, no.2, pp.273-290, 1970.
    32 Zhaoming Zhu and Thomas G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers", Optics Express, vol.10, no.17, pp.853-864, 2002
    33 Jijiang Wu, Bangren Shi, and Mei Kong, "Exponentially tapered multi-mode interference couplers", Chinese Optics Letters, vol.4, no.3, pp.167-169, 2006.

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE