簡易檢索 / 詳目顯示

研究生: 曾品彰
Tseng, Ping-Chang
論文名稱: 高性能鋼筋混凝土梁在剪力與扭矩組合載重下之承力行為研究
指導教授: 方一匡
Fang, I-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 114
中文關鍵詞: 剪力高性能混凝土梁扭矩
外文關鍵詞: high-performance concrete, torsion, shear
相關次數: 點閱:77下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究旨在探討高性能混凝土梁受到扭矩與剪力組合載重作用下之強度與變形行為,另由構件內、外部應變之變化,探討因組合載重比例變化對於試體破壞模式改變之影響。

      試體部分共規劃六根實心斷面與七根空心斷面之高性能鋼筋混凝土試體,試體斷面尺寸為350×500 mm,保護層為25 mm。混凝土之抗壓強度為58~68 MPa。試體之全長分別為3100 mm與4400 mm,中央測試區之長度分別為1600 mm與1500 mm。主要討論之變數為扭矩與剪力比例值(T/V)及實心斷面與空心斷面。

      試驗結果顯示:(1)隨著試體所受到T/V比值的降低,試體表面開裂型式會由近似立體桁架型式(TypeⅠ)轉變為類斜彎矩型式(TypeⅡ),進而再轉變為近似平面桁架型式(TypeⅢ),當試體加載超過極限強度後,實心斷面試體之強度遞減會較空心斷面試體慢。(2)試體表面混凝土翹曲現象會隨著T/V比值的下降而減弱,且因扭矩與剪力組合載重作用造成不同受力面上變形的差異會產生側向彎曲,側向曲率會隨著T/V比值的下降先增加然後減少,其中以開裂型式為TYPE Ⅱ試體之側向曲率最大,且空心斷面試體之側向彎曲現象會較實心斷面試體顯著。(3)試體正面混凝土在45∘方向上受壓力區域會隨著T/V比值的降低而增加,而試體背面混凝土在45∘方向上受壓力區域會隨著T/V比值的降低而減小。(4)在受到扭矩與剪力組合載重作用下,配置低鋼筋量之高性能混凝土實心斷面試體會有剪力鬆弛的現象,但空心斷面試體因受到壁厚之限制,並無剪力鬆弛的現象。(5)TypeⅠ開裂型式之試體,不論實心或空心斷面,梁試體正面之平均主張與平均主壓應變,皆相當接近由軟化桁架模式所計算出之理論值。同時,由實驗結果顯示混凝土斜壓桿件之擠碎現象為TypeⅠ開裂型式試體破壞主因。(6)TypeⅡ開裂型式空心斷面試體之破壞主因為背面產生混凝土擠碎現象。

    none

    摘要----------------------------------------------------------------Ⅰ. 目錄----------------------------------------------------------------Ⅲ. 表目錄--------------------------------------------------------------Ⅴ. 圖目錄--------------------------------------------------------------Ⅵ. 符號表------------------------------------------------------------ⅩⅠ. 第一章 緒 論 1-1 研究背景------------------------------------------------------1. 1-2 研究目的------------------------------------------------------2. 1-3 文獻回顧------------------------------------------------------3. 第二章 試驗計劃 2-1 試體規劃------------------------------------------------------8. 2-2 試驗製作------------------------------------------------------9. 2-2-1 試體材料性質----------------------------------------------9. 2-2-2 試體製作流程---------------------------------------------11. 2-3 試驗程序-----------------------------------------------------13. 2-3-1 試體設備與量測儀器---------------------------------------13. 2-3-2 試驗方法---------------------------------------------------14. 第三章 結果與討論 3-1 試體表面開裂型式與T/V比例值關--------------------------------16. 3-1-1 第一類(TypeⅠ)開裂型式-----------------------------------16. 3-1-2 第二類(TypeⅡ)開裂型式-----------------------------------18. 3-1-3 第三類(TypeⅢ)開裂型式-----------------------------------20. 3-2 試體之變形行為與T/V比例值關係--------------------------------21. 3-2-1 T/V比例值對表面平均應變之影響----------------------------21. 3-2-2 T/V比例值對側向曲率之影響--------------------------------24. 3-2-3 T/V比例值對翹曲效應之影響--------------------------------26. 3-3 試體之壓力區厚度與T/V比例值關係------------------------------28. 3-3-1 空心斷面梁之壓力區厚度變化-------------------------------28. 3-3-2 實心斷面梁之壓力區厚度變化-------------------------------30. 3-4 試體之強度與T/V比例值關係------------------------------------33. 3-5 試體混凝土之軟化與T/V比例值關係------------------------------36. 3-5-1 不同開裂型式試體之混凝土軟化現象-------------------------36. 3-5-2 不同開裂型式試體破壞主因之探討---------------------------40. 第四章 結論----------------------------------------------------------43. 參考文獻------------------------------------------------------------115.

    1.Lessig, N. N.,“Determination of Load-Carrying Capacity of Rectangular Reinforced Concrete Elements Subjected to Flexure and Torsion,” Trudy No. 5,Institut Betona i Zhelezobetona (Concrete and Reinforced Concrete Institute), Moscow, pp. 5-28. 1959. (in Russian). Translated by Portland Cement Association, Foreign Literature Study No. 371. Available from S.L.A. Translation Center, The John
    Crerar Library Translation Center, 35 W. 33rd St. Chicago, Illinois 60616.

    2.State Committee on Construction of the USSR Council of Ministers, ”Structural Standards and Regulations,” SniP Ⅱ-B, 1-62, State Publishing Offices for Literature on Structural Engineering, Architecture and Structural Materials,Moscow, 1962 (in Russian).

    3.Yudin, V. K., “Determination of the Load-Carrying Capacity of Rectangular Reinforced Concrete Elements Subjected to Combined Torsion and Bending,” Beton I Zhelezobeton (Concrete and Reinforced Concrete), Moscow, N0. 6, June, pp. 265-269, 1962. (in Russian). Translated by Portland Cement Association, Foreign Literature Study N0. 377.

    4.Collins, M. P.; Walsh, P. F.; Archer, F. E.; and Hall, A. S., “Reinforced Concrete Beams Subjected to Combined Torsion, Bending and Shear,” UNICIV Report, No. R-14, University of New South Wales, October 1965.

    5.Collins, M. P.; Walsh, P. F.; Archer, F. E.; and Hall, A. S., “Ultimate Strength of Reinforced Concrete Beams Subjected to Combined Torsion, and Bending,” Torsion of Structure, SP-18, American Concrete Institute, Detroit, , pp. 279-420, 1968.

    6.Elfgren, L., “Reinforced Concrete Beams Loaded in Combined Torsion, Bending and Shear,” Publication 71:3, Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden, 1972.

    7.Rausch, E., “Design of Reinforced Concrete in Torsion”(Berechnung des Eisenbetons gegen Verdrehung), Ph.D. thesis, Technische Hochschule, Berlin, pp. 53, 1929.

    8.Lempert, P. and B. Thurlimann,“Torsionsversuche an Stahlbetonbalken”(Torsion Tests of Reinforced Concrete Beams), Bericht Nr. 6506-2, June 1968;“Torsion-Biege-Versuche an Stahlbetonbalken”(Torsion- Bending Tests on Reinforced Concrete Beams), Bericht Nr. 6506-3, January 1969, Institut fur Baustatik, ETH, Zurich. (in German)

    9.Elfgren, L., Karlsson I., and Losberg A., ”Torsion-Bending-Shear Interaction for Concrete Beams,” Journal of the Structural Division, ASCE, Vol.100, No. 8,pp. 1657-1676, 1974.

    10.Ewida, A. A. and McMullen, A. E., “Concrete Members under Combined Torsion and Shear,” Journal of the Structural Division. ASCE, Vol. 108, No. 4, pp.911-928, 1982.

    11.Rahal K. N. and Collins M. P., “ Analysis of Sections Subjected to Combined Shear and Torsion- A Theoretical Model” ACI Structural Journal, Vol. 92, No.4, pp. 459-469, 1995.

    12.朱信澈, 「鋼筋混凝土樑在扭矩與剪力組合載重作用下之行為研究」 , 碩士論文,國立成功大學土木工程研究所,臺南(2002)。

    13.ACI Standard 318-02, Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318-02), American Concrete Institute, Detroit, pp 139-154, 2002.

    14.賴裕光, 「鋼筋混凝土樑受純扭矩作用下剪力流有效厚度之研究」 , 碩士論文,國立成功大學土木工程研究所,臺南(1998)。

    15.Ritter, W., “Die Bauweise Hennebique,’’ Schweizerishe Bauzeitung (Zurich), V. 33, No. 7, Feb. pp. 59-61, 1899.
    16.Morsch, E., “Der Eisenbetonbau, seine Anwendung und Theorie,’’ 1st Edition, Wayssand freytag, A. G., Im Selbstverlag der Firma, Neustadt ad. Haardt, pp. 118, 1902.

    17.Rahal K. N. and Collins M. P., “ Effect of Thickness of Concrete Cover on Shear-Torsion Interaction—An Experimental Investigation,” ACI Structural Journal, Vol. 92, No. 3, pp. 334-342, 1995.

    18.Hsu, T. T. C., and Mo, Y. L.,“Softening of Concrete in Torsional Members-Theory and Test,”ACI Journal, Proceedings V. 82, No. 3, pp. 290-303, 1985.

    19.Ewida A. A. and McMullen A. E., ”Torsion-shear-flexure interaction in reinforced concrete members” Magazine of Concrete Research, Vol. 33, No.115, June 1981.

    20.Rahal K. N. and Collins M. P., “ Experimental Evaluation of ACI and AASHTO-LRFD Design Provisions for Combined Shear and Torsion,” ACI Structural Journal, Vol. 100, No. 3, pp. 277-282. 2003.

    21.American Association of State Highway and Transportation Officials,“AASHTO-LRFD Bridge Design Specifications and Commentary,” SI Units, 2nd Edition, Washington, D.C., pp. 1091, 1998.

    22.Vecchio, F. and Collins, M. P., “Stress-Strain Characteristics of Reinforced Concrete in Pure Shear,’’ Colloquium on Advanced Mechanics of Reinforced Concrete, International Association for Bridge and Structural Engineering, Delft, pp. 211-225, 1981.

    23.Belarbi, A. and Hsu, T. T. C., “Constitutive Laws of Softened Concrete in Biaxial Tension-Compression,’’ ACI Structural Journal, Vol. 92, No. 5, pp. 562-573, 1995.

    24.Pang, X. B. and Hsu, T. T. C., “Behavior of Reinforced Concrete Membrane Elements in Shear,’’ ACI Structural Journal, Vol. 92, No. 6, pp. 665-679, 1995.

    下載圖示 校內:立即公開
    校外:2004-07-19公開
    QR CODE