簡易檢索 / 詳目顯示

研究生: 江奕儕
Chiang, Yi-Chai
論文名稱: 不同基板於溶液法製備奈米結構BaZnO2及其光催化與壓電相關性質之研究
Solution-based Fabrication of Nanostructured BaZnO2 on Substrates and Its Study of Photocatalytic and Piezo-related Properties
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 64
中文關鍵詞: BaZnO2奈米線溶熱法製程壓電性質壓電子性質
外文關鍵詞: BaZnO2 nanowires, solvothermal synthesis, piezoelectricity, piezotronic properties
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • BaZnO2展現出與α石英族相似的結構對稱性,但擁有更好的壓電性質與更高的相轉變溫度。因此,它有望成為高功率壓電材料的候選。
      然而,由於僅有少數關於BaZnO2的研究,其較簡易的製程方式未被探討,且物理及化學性質也尚未被理解。根據文獻,BaZnO2可以在使用極高溫度的方法下被製成。在我們最近的研究裡,BaZnO2奈米線已可成功藉由溶熱法合成,且諸如pH值與基板等因素則被納入考慮。由XRD結果則顯示BaZnO2繞射峰與少數的雜質。從SEM影像中可以發現FTO基板上的長形且具高密度的BaZnO2奈米線。由TEM則可確認單晶的BaZnO2與其(101 ̅2)、(202 ̅0)、(303 ̅2)等面,及其沿著[0001]的成長方向。由XPS所計算的BaZnO2原子比例顯示其鋇原子缺乏的結構,且其可能源自於BaCO3的形成與沉澱。電性量則可用來探討BaZnO2壓電子/壓電光電子性質,且計算蕭特機能障高度的變化。

    BaZnO2 exhibits a similar structural alignment with α-quartz; however, it possesses better piezoelectric properties and higher transition temperature. Thus, it represents a promising candidate for high-performance piezoelectric materials.
    However, only a few investigations had been employed, its facile fabrication is yet to be explored, and its physical and chemical properties are still not well understood. From literature, BaZnO2 was fabricated through the use of extremely high temperature method. In the current study, BaZnO2 nanowires were successfully synthesized by the solvothermal method. Parameters such as pH values and substrates were considered. The XRD results showed BaZnO2 peaks with minor impurities. Long and high density BaZnO2 nanowires were observed on the FTO substrates from the SEM images. The single crystalline nature of BaZnO2 at the planes of (101 ̅2), (202 ̅0), and (303 ̅2) and the growth direction along [0001] were ascertained by TEM analysis. The atomic ratio of BaZnO2 calculated from the XPS results revealed a Ba deficient structure, which might be due to the BaCO3 precipitation. Electrical measurements were employed to study the piezotronic/piezophototronic properties of BaZnO2 and the Schottky barrier height variation was also calculated.

    CHAPTER 1 INTRODUCTION 1 1.1 Energy sustainability 1 1.2 Photocatalysis 1 1.2.1 Photocatalytic Degradation 2 1.2.2 Photoelectrochemical Water Splitting 3 1.2.3 Strategies for improving photocatalytic activity 5 (1) Band gap modulating (doping) 5 (2) Morphology controlling 6 (3) Complex metal oxides 7 (4) Nanocomposites (heterogeneous photocatalysts) 8 (5) Sonophotocatalysis 9 1.3 Piezo-related properties 11 1.3.1 Piezoelectricity 11 1.3.2 Piezotronics 13 1.3.3 Piezophototronics 15 1.3.4 Piezophotocatalysis 17 1.3.5 Potential piezophotocatalyst 20 1.4 BaZnO2 22 1.4.1 Material structure 22 1.4.2 Material properties 24 1.4.3 BaZnO2 fabrication processes 25 (1) Solid state reaction 25 (2) Thermal decomposition 26 1.5 Motivation 31 CHAPTER 2 EXPERIMENTAL SECTION 32 2.1 Materials 32 2.2 Methodology 32 2.2.1 Substrate cleaning 32 2.2.2 Solvothermal synthesis 32 2.2.3 Characterizations 34 (1) X-ray Diffraction (XRD) 34 (2) Scanning Electron Microscopy (SEM) 36 (3) Transmission Electron Microscopy (TEM) 37 (4) X-ray Photoelectron Spectroscopy (XPS) 38 (5) Electrical Measurements 38 (6) Photocatalysis 40 CHAPTER 3 RESULTS AND DISCUSSION 41 3.1 Fabrication of BaZnO2 41 3.1.1 Hydrothermal process 41 3.1.2 Solvothermal process 43 (1) pH effects 43 (2) Substrate effects 45 3.2 Characterizations of BaZnO2 46 3.2.1 SEM analysis 46 3.2.2 TEM analysis 48 3.2.3 XPS analysis 50 CHAPTER 4 CONCLUSION 53 4.1 Fabrication of BaZnO2 53 4.2 Characterizations of BaZnO2 53 4.2.1 XRD results 53 4.2.2 SEM analysis 53 4.2.3 TEM analysis 53 4.2.4 XPS analysis 54 FUTURE WORK 54 REFERENCES 55

    [1] K. Berger, F. Boufatah, R. Linares, H. Menana, M. Hinaje, B. Douine, and J. Leveque, "Solar Electric Motor on Superconducting Bearings: Design and Tests in Liquid Nitrogen," IEEE Trans. Appl. Supercond. 27, 1 (2017).
    [2] M. Thiébaut, and A. Sentchev, "Asymmetry of tidal currents off the W.Brittany coast and assessment of tidal energy resource around the Ushant Island," Renew. Energy 105, 735 (2017).
    [3] K. L. DeKoker, G. Crevecoeur, B. Meersman, M. Vantorre, and L. Vandevelde, "A wave emulator for ocean wave energy, a Froude-scaled dry power take-off test setup," Renew. Energy 105, 712 (2017).
    [4] A. Elhanafi, A. Fleming, G. Macfarlane, and Z. Leong, "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renew. Energy 105, 209 (2017).
    [5] S. Fogelberg, and E. Lazarczyk, "Wind power volatility and its impact on production failures in the Nordic electricity market," Renew. Energy 105, 96 (2017).
    [6] W. M. SooHoo, C. Wang, and H. Li, "Geospatial assessment of bioenergy land use and its impacts on soil erosion in the U.S. Midwest," J. Environ. Manage. 190, 188 (2017).
    [7] J. A. Rivera, P. Blum, and P. Bayer, "Increased ground temperatures in urban areas: Estimation of the technical geothermal potential," Renew. Energy 103, 388 (2017).
    [8] B. Wang, W. Guo, and J. Yang, "Analytical solutions for determining extreme water levels in surge tank of hydropower station under combined operating conditions," Commun. Nonlinear Sci. Numer. Simul. 47, 394 (2017).
    [9] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, "Nanowire dye-sensitized solar cells," Nat. Mater. 4, 455 (2005).
    [10] C. Zhang, and Y. Zhu, "Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts," Chem. Mater. 17, 3537 (2005).
    [11] D. Li, H. Haneda, S. Hishita, and N. Ohashi, "Visible-Light-Driven N−F−Codoped TiO2 Photocatalysts. 2. Optical Characterization, Photocatalysis, and Potential Application to Air Purification," Chem. Mater. 17, 2596 (2005).
    [12] D. Chatterjee, and S. Dasgupta, "Visible light induced photocatalytic degradation of organic pollutants," J. Photochem. Photobiol. C Photochem. Rev. 6, 186 (2005).
    [13] S. C. Yan, Z. S. Li, and Z. G. Zou, "Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine," Langmuir 25, 10397 (2009).
    [14] A. Fujishima, and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode.," Nature 238, 37 (1972).
    [15] T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," Int. J. Hydrogen Energy 27, 991 (2002).
    [16] M. Gratzel, "Photoelectrochemical cells," Nature 414, 338 (2001).
    [17] Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols (2013).
    [18] A. Kudo, and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chem. Soc. Rev. 38, 253 (2009).
    [19] G. Wang, Y. Ling, H. Wang, X. Lu, and Y. Li, "Chemically modified nanostructures for photoelectrochemical water splitting," J. Photochem. Photobiol. C Photochem. Rev. 19, 35 (2014).
    [20] M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renew. Sustain. Energy Rev. 11, 401 (2007).
    [21] K. Sivula, F. LeFormal, and M. Gratzel, "Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes," ChemSusChem 4, 432 (2011).
    [22] M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, and K. Domen, "Cu2O as a photocatalyst for overall water splitting under visible light irradiation," Chem. Commun., 357 (1998).
    [23] J. Qi, K. Zhao, G. Li, Y. Gao, H. Zhao, R. Yu, and Z. Tang, "Multi-shelled CeO₂ hollow microspheres as superior photocatalysts for water oxidation," Nanoscale 6, 4072 (2014).
    [24] V. Etacheri, C. DiValentin, J. Schneider, D. Bahnemann, and S. C. Pillai, "Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments," J. Photochem. Photobiol. C Photochem. Rev. 25, 1 (2015).
    [25] K. Hashimoto, H. Irie, and A. Fujishima, "TiO2 photocatalysis: A Historical Overview and Future Prospects," Jpn. J. Appl. Phys. 44, 8269 (2005).
    [26] R. Konta, T. Ishii, H. Kato, and A. Kudo, "Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation," J. Phys. Chem. B 108, 8992 (2004).
    [27] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides," Science 293, 269 (2001).
    [28] J. C. Yu, J. Yu, W. Ho, Z. Jiang, and L. Zhang, "Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders," Chem. Mater. 14, 3808 (2002).
    [29] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, "Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light," Appl. Catal. A Gen. 265, 115 (2004).
    [30] A. Barhoum, J. Melcher, G. VanAssche, H. Rahier, M. Bechelany, M. Fleisch, and D. Bahnemann, "Synthesis, growth mechanism, and photocatalytic activity of Zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles," J. Mater. Sci. 52, 2746 (2017).
    [31] H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, "Nano-photocatalytic materials: Possibilities and Challenges," Adv. Mater. 24, 229 (2012).
    [32] P. Tongying, F. Vietmeyer, D. Aleksiuk, G. J. Ferraudi, G. Krylova, and M. Kuno, "Double heterojunction nanowire photocatalysts for hydrogen generation," Nanoscale 6, 4117 (2014).
    [33] Y. Chen, J. C. Crittenden, S. Hackney, L. Sutter, and D. W. Hand, "Preparation of a Novel TiO2-Based p-n Junction Nanotube Photocatalyst," Environ. Sci. Technol. 39, 1201 (2005).
    [34] Y. Wang, L. Zhang, K. Deng, X. Chen, and Z. Zou, "Low Temperature Synthesis and Photocatalytic Activity of Rutile TiO2 Nanorod Superstructures," J. Phys. Chem. C 111, 2709 (2007).
    [35] Y. -J. Peng, S. -Y. Lee, and K. -S. Chang, "Facile Fabrication of a Photocatalyst of Ta4N5 Nanocolumn Arrays by Using Reactive Sputtering," J. Electrochem. Soc. 162, H371 (2015).
    [36] J. Ren, W. Wang, M. Shang, S. Sun, L. Zhang, and J. Chang, "Photocatalytic activity of silver vanadate with one-dimensional structure under fluorescent light," J. Hazard. Mater. 183, 950 (2010).
    [37] C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and S. Lin, "New nonlinear-optical crystal: LiB3O5," J. Opt. Soc. Am. B 6, 616 (1989).
    [38] C. T. Chen, G. L. Wang, X. Y. Wang, and Z. Y. Xu, "Deep-UV nonlinear optical crystal KBe2BO3F2—discovery, growth, optical properties and applications," Appl. Phys. B 97, 9 (2009).
    [39] N. Ye, W. Zeng, J. Jiang, B. Wu, and C. Chen, "New nonlinear optical crystal K2Al2B2O7," J. Opt. Soc. Am. B 17, 764 (2000).
    [40] G. Zhang, H. Liu, X. Wang, F. Fan, and P. Fu, "Growth and characterization of nonlinear optical crystal BaCaBO3F," J. Cryst. Growth 289, 188 (2006).
    [41] X. Fan, L. Zang, M. Zhang, H. Qiu, Z. Wang, J. Yin, H. Jia, S. Pan, and C. Wang, "A Bulk Boron-Based Photocatalyst for Efficient Dechlorination : K3B6O10Br," Chem. Mater. 26, 3169 (2014).
    [42] P. S. Halasyamani, and K. R. Poeppelmeier, "Noncentrosymmetric Oxides," Chem. Mater. 10, 2753 (1998).
    [43] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, and J. R. Gong, "Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets," J. Am. Chem. Soc. 133, 10878 (2011).
    [44] H. Park, W. Choi, and M. R. Hoffmann, "Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production," J. Mater. Chem. 18, 2379 (2008).
    [45] S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen, "Magnetically Separable Fe3O4/TiO2 Hollow Spheres: Fabrication and Photocatalytic Activity," J. Phys. Chem. C 113, 553 (2009).
    [46] X. Pan, Y. Zhao, S. Liu, C. L. Korzeniewski, S. Wang, and Z. Fan, "Comparing Graphene-TiO2 Nanowire and Graphene-TiO2 Nanoparticle Composite Photocatalysts," ACS Appl. Mater. Interfaces 4, 3944 (2012).
    [47] I. M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S. G. Neophytides, and P. Falaras, "Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation," J. Catal. 220, 127 (2003).
    [48] H. Cheng, B. Huang, Y. Dai, X. Qin, and X. Zhang, "One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances," Langmuir 26, 6618 (2010).
    [49] L. -S. Zhang, K. -H. Wong, H. -Y. Yip, C. Hu, J. C. Yu, C. -Y. Chan, and P. -K. Wong, "Effective Photocatalytic Disinfection of E . coli K-12 Using AgBr-Ag-Bi2WO6 Nanojunction System Irradiated by Visible Light : The Role of Diffusing Hydroxyl Radicals," Environ. Sci. Technol. 44, 1392 (2010).
    [50] V. Augugliaro, M. Litter, L. Palmisano, and J. Soria, "The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance," J. Photochem. Photobiol. C Photochem. Rev. 7, 127 (2006).
    [51] C. Berberidou, I. Poulios, N. P. Xekoukoulotakis, and D. Mantzavinos, "Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions," Appl. Catal. B Environ. 74, 63 (2007).
    [52] C. G. Joseph, G. Li Puma, A. Bono, and D. Krishnaiah, "Sonophotocatalysis in advanced oxidation process: A short review," Ultrason. Sonochem. 16, 583 (2009).
    [53] M. Mrowetz, C. Pirola, and E. Selli, "Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO2," Ultrason. Sonochem. 10, 247 (2003).
    [54] K. M. Ok, E. O. Chi, and P. S. Halasyamani, "Bulk characterization methods for non-centrosymmetric materials: second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity," Chem. Soc. Rev. 35, 710 (2006).
    [55] C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunn, "Piezoelectric and ferroelectric materials and structures for energy harvesting applications," Energy Environ. Sci. 7, 25 (2014).
    [56] P. K. Panda, "Review: environmental friendly lead-free piezoelectric materials," J. Mater. Sci. 44, 5049 (2009).
    [57] T. R. Shrout, and S. J. Zhang, "Lead-free piezoelectric ceramics: Alternatives for PZT?," J. Electroceramics 19, 111 (2007).
    [58] X. Wen, W. Wu, Y. Ding, and Z. L. Wang, "Piezotronic Effect in Flexible Thin-film Based Devices," Adv. Mater. 25, 3371 (2013).
    [59] Z. L. Wang, "Progress in Piezotronics and Piezo-Phototronics," Adv. Mater. 24, 4632 (2012).
    [60] Y. Zhang, Y. Liu, and Z. L. Wang, "Fundamental Theory of Piezotronics," Adv. Mater. 23, 3004 (2011).
    [61] J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, and Z. L. Wang, "Piezoelectric-Potential-Controlled Polarity-Reversible Schottky Diodes and Switches of ZnO Wires," Nano Lett. 8, 3973 (2008).
    [62] R. Yu, L. Dong, C. Pan, S. Niu, H. Liu, W. Liu, S. Chua, D. Chi, and Z. L. Wang, "Piezotronic Effect on the Transport Properties of GaN Nanobelts for Active Flexible Electronics," Adv. Mater. 24, 3532 (2012).
    [63] W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, "Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics," Nature 514, 470 (2014).
    [64] Z. L. Wang, "Piezotronic and Piezophototronic Effects," J. Phys. Chem. Lett. 1, 1388 (2010).
    [65] Z. L. Wang, "Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics," Nano Today 5, 540 (2010).
    [66] M. B. Starr, and X. Wang, "Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials," Sci. Rep. 3, 1 (2013).
    [67] X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, and Z. L. Wang, "Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires," Nano Energy 13, 414 (2015).
    [68] K. S. Hong, H. Xu, H. Konishi, and X. Li, "Direct Water Splitting Through Vibrating Piezoelectric Microfibers in Water," J. Phys. Chem. Lett. 1, 997 (2010).
    [69] A. Kolodziejczak-Radzimska, and T. Jesionowski, "Zinc Oxide-From Synthesis to Application: A Review," Materials 7, 2833 (2014).
    [70] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, "Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire," Nana Lett. 6, 2768 (2006).
    [71] J. M. Wu, C. Xu, Y. Zhang, and Z. L. Wang, "Lead-Free Nanogenerator Made from Single ZnSnO3 Microbelt," ACS Nano 6, 4335 (2012).
    [72] M. Miyauchi, Z. Liu, Z. -G. Zhao, S. Anandan, and K. Hara, "Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices," Chem. Commun. 46, 1529 (2010).
    [73] Y. -T. Wang, and K. -S. Chang, "Piezopotential-Induced Schottky Behavior of Zn1− x SnO3 Nanowire Arrays and Piezophotocatalytic Applications," J. Am. Ceram. Soc. 99, 2593 (2016).
    [74] A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, "Linear and nonlinear optical properties of BiFeO3," Appl. Phys. Lett. 92, 121915 (2008).
    [75] G. Catalan, and J. F. Scott, "Physics and Applications of Bismuth Ferrite," Adv. Mater. 21, 2463 (2009).
    [76] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures," Science 299, 1719 (2003).
    [77] Y. Zeng, Y. Zheng, J. Xin, and E. Shi, "First-principle study the piezoelectricity of a new quartz-type crystal BaZnO2," Comput. Mater. Sci. 56, 169 (2012).
    [78] O. Cambon, P. Yot, S. Rul, J. Haines, and E. Philippot, "Growth and dielectric characterization of large single crystals of GaAsO4, a novel piezoelectric material," Solid State Sci. 5, 469 (2003).
    [79] E. Philippot, A. Goiffon, A. Ibanez, and M. Pintard, "Structure Deformations and Existence of the α-β Transition in MXO4 Quartz-like Materials," J. Solid State Chem. 110, 356 (1994).
    [80] J. Haines, O. Cambon, D. A. Keen, M. G. Tucker, and M. T. Dove, "Structural disorder and loss of piezoelectric properties in α-quartz at high temperature," Appl. Phys. Lett. 81, 2968 (2002).
    [81] G. S. Smith, and P. B. Isaacs, "The Crystal Structure of Quartz-like GeO2," Acta Crystallogr. 17, 842 (1964).
    [82] P. Gillet, J. Badro, B. Varrel, and P. F. McMillan, "High-pressure behavior in α-AlPO4: Amorphization and the memory-glass effect," Phys. Rev. B 51, 11262 (1995).
    [83] U. Spitsbergen, "The Crystal Structures of BaZnO2 , BaCoO2 and BaMnO2," Acta Crystallogr. 13, 197 (1960).
    [84] Y. Wang, Y. Cheng, X. He, G. Ji, and X. Chen, "Pressure effects on structural, elastic and electronic properties of BaZnO2 : first-principles study," Philos. Mag. 95, 64 (2015).
    [85] Y. -X. Wang, C. -E. Hu, Y. -M. Chen, Y. Cheng, and G. -F. Ji, "First-Principles Study of the Structural, Optical, Dynamical and Thermodynamic Properties of BaZnO2 Under Pressure," Int. J. Thermophys. 37, 106 (2016).
    [86] R. Bechmann, "Elastic and Piezoelectric Constants of Alpha-Quartz," Phys. Rev. 110, 1060 (1958).
    [87] T. L. Jordan, and Z. Ounaies, "Piezoelectric Ceramics Characterization," (2001).
    [88] Y. Zheng, J. M. Wang, H. Chen, J. Q. Zhang, and C. N. Cao, "Effects of barium on the performance of secondary alkaline zinc electrode," Mater. Chem. Phys. 84, 99 (2004).
    [89] K. I. T. Eberhard Umbach, "8TH BRAZILIAN/GERMAN WORKSHOP ON APPLIED SURFACE SCIENCE," (2013).
    [90] M. A. Ryumin, Z. V. Dobrokhotova, A. L. Emelina, M. A. Bukov, N. V. Gogoleva, K. S. Gavrichev, E. N. Zorina-Tikhonova, L. I. Demina, M. A. Kiskin, A. A. Sidorov, I. L. Eremenko, and V. M. Novotortsev, "Synthesis, structure and thermolysis of Ba(II)-M(II) (M = Co, Zn) bimetallic 3D-polymers as precursors of complex oxides," Polyhedron 87, 28 (2015).
    [91] K. Marty, P. Bordet, V. Simonet, M. Loire, R. Ballou, C. Darie, J. Kljun, P. Bonville, O. Isnard, P. Lejay, B. Zawilski, and C. Simon, "Magnetic and dielectric properties in the langasite-type compounds: A3BFe3D2O14 (A=Ba, Sr, Ca; B=Ta, Nb, Sb; D=Ge, Si )," Phys. Rev. B 81, 1 (2010).
    [92] N. Takeno, "Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases," Natl. Inst. Adv. Ind. Sci. Technol. (2005).
    [93] R. P. Vasquez, "X-ray photoelectron spectroscopy study of Sr and Ba compounds," J. Electron Spectros. Relat. Phenomena 56, 217 (1991).
    [94] G. Deroubaix, and P. Marcus, "X-ray Photoelectron Spectroscopy Analysis of Copper and Zinc Oxides and Sulphides," Surf. Interface Anal. 18, 39 (1992).
    [95] L. -J. Meng, C. P. Moreira de Sá, and M. P. dosSantos, "Study of the structural properties of ZnO thin films by X-ray photoelectron spectroscopy," Appl. Surf. Sci. 78, 57 (1994).
    [96] M. M. Lencka, and R. E. Riman, "Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders," Chem. Mater. 5, 61 (1993).
    [97] J. Adam, G. Klein, and T. Lehnert, "Hydroxyl Content of BaTiO3 Nanoparticles with Varied Size," J. Am. Ceram. Soc. 96, 2987 (2013).

    無法下載圖示 校內:2019-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE