| 研究生: |
李俊奇 Li, Chun-Chi |
|---|---|
| 論文名稱: |
pH值及鋅離子濃度
對胰蛋白酶活性及結構之影響 Effects of pH Value and Zn2+ Concentration on bioactivity and structure of Trypsin |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 胰蛋白? 、鋅離子 |
| 外文關鍵詞: | trypsin, zinc |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用紫外線光譜、圓二色光譜、螢光光譜來探討在不同濃度鋅離子、不同pH值環境下,對胰蛋白酶(trypsin)之活性及結構的影響。實驗的結果顯示出:當有鋅離子存在時,會對胰蛋白酶形成抑制作用(非競爭性的)。在[Zn2+]=166mM,pH 7.16下,相對於不加鋅離子,活性下降最大可達33.57%;在[Zn2+]=166mM,pH值(由7.16 → 6.5)下時也會使得胰蛋白酶的活性下降,相對於不加鋅離子,活性下降最大可達42.92%。在Far-UV CD的圖譜中發現,在有鋅離子存在的胰蛋白酶溶液,其二級結構會有明顯的變化,隨[Zn2+]增加α-helix成份比例明顯增加;改變pH值時也會造成類似的結果。在Near-UV CD的圖譜中發現,當加入鋅離子或是改變pH值時,對於三級結構並沒有造成明顯的變化,只有在光譜的強度方面發生些微的改變,而這也代表著胰蛋白酶的局部的構形發生變化。在螢光光譜中發現,ANS、Trp、MIANS螢光光譜在加入鋅離子時都會造成胰蛋白酶表面疏水性區域增加,當使pH值下降時,我們也發現胰蛋白酶表面疏水性區域增加的幅度隨pH值下降而下降。因此,綜合上述光譜的結果,發現當加入不同濃度鋅離子及改變pH值都會造成胰蛋白酶活性和結構上的改變。
Circular Dichroism (CD) and fluorescence Spectroscopy have been used to investigate the effects of pH value and Zn2+ concentration on the bioactivity and structure of trypsin. It was found that the existence of the Zn2+ is capable of affecting the hydrolytic ability of trypsin on the substrate of N-benzoyl arginine ethyl ester (BAEE). The inhibition of Zn2+ on trypsin is uncompetitive binding at a site different from that of BAEE. When [Zn2+] = 166 mM and at pH 7.16, the initial hydrolytic rate toward BAEE was dropped 33.57%; furthermore, with the same concentration of Zn2+and pH 6.5, it was found that 42.92% of the activity was lost. In order to investigate the structural change of trypsin under this condition, CD and Fluorescence spectra were measured. Far-UV CD spectra showed that the existence of Zn2+ caused the percentage of 2o structural component of α-helix increased with the increasing of Zn2+ concentration. And the deviation of pH from 8 also resulted in the same results. However, the Near-UV CD spectra indicated the tertiary structure of trypsin did not show obvious changes, except little decreasing of intensity, suggesting the structural changes caused due to the binding of Zn2+ was a local alteration. ANS, Trptophan and MIANS fluorescence spectra showed that the hydrophobic region increased with the existence of Zn2+, indicative of more tryptophan resides and aromatic side chain containing amino acid residues exposed; however, when pH value was in acidic condition, the hydrophobic region was decreased, suggesting low pH value is not a good condition for trypsin hydrolytic activity.
參考文獻
1. Dörnyei, A., Kilyén, M., Kiss, T., Gyurcsik, B., Laczkó, I., Pécsváradi, A., Ssimon, L.M., Kotormán, M.:The effects of Al(Ⅲ) speciation on the activity of trypsin. Journal of Inorganic Biochemistry 97, pp 118-123; 2003
2. Kotormán, M., Laczkó, I., Szabó, A. and Simon, L.M.:Effects of Ca2+ on catalytic activity and conformation of trypsin and α-chymotrypsin in aqueous ethanol. Biochemical and Biophysical Research Communications 304, pp 18-21; 2003
3. Spreti, N., Profio, P.D., Marte, L., Bufali, S., Brinchi, L. and Gianfranco, S.:Activation and stabilization of α-chymotrypsin by cationic additives. Eur. J. Biochem 268, pp 6491-6497; 2001
4. Simon, L.M., László, K., Vértesi, A., Bagi, K. and Szajáni, B.:Stability of hydrolytic enzymes in water-organic solvent systems. Journal of Molecular Catalysis B: Enzymatic 4, pp 41-45; 1998
5. Joseph, P., Lakowicz, J.:Principles of Fluorescence Spectroscopy2nd. Kluwer Academic, pp 698-701; 1999
6. Krasnowska, E.K., Gratton, E., Parasassi, T.:Prodan as a Membrane Surface Fluorescence Probe:Partitioning between water and phospholipid phases. Biophysical Journal 74, pp 1984-1993; 1998
7. Gupte, S.S., and Lane, L.K.:Reaction of purified (Na,K)-ATPase with the fluorescent sulfhydryl probe 2-(4’-maleimidylanilino) naphthalene 6-sulfonic acid. Characterization and the effects of ligands. J Biol Chem 254, pp 10362-10369; 1979
8. Nelson, D.L., Cox, M.M.:Lehninger Principles of Biochemistry3nd. Worth, pp 243-289; 2000
9. Juang,R.H:Enzyme Biochemistry Laboratory. pp 73-88; 2000
10. Manavalan, P. and Johnson, W.C.:Sensitivity of circular dichroism to protein tertiary structure class. Letters to Nature 305, pp 831-832; 1933
11. Jacson, M., Haris, P.I.., Chapman, D.:Fourier transorm infrared spectroscopic studies of Ca2+-binding proteins. Biochemistry 30, pp 9681-9686; 1991
12. Kidd, R.D., Yennawar, H.P., Sears, P., Wong, C.H., Farber, G.K.:A weak calcium binding site in subtilisin BPN’ has a dramatic effect on protein stability. J. Am. Chem 118, pp 1645-1650; 1996
13. Provencher, S.W., Glöckner, J.:Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20, pp 33-37; 1981
14. Kahn, P.C.:The interpretation of near-ultraviolet circular dichroism. Methods Enzymol 61, pp 339-377; 1979
15. Andley UP, Liang JN, Chakrabarti B.:Fluorescent probes for polar-polar nature and sulfhydryl group accessibility. Biochemistry 21, pp 1853-1858; 1982
16. Timasheff, S.N.:Control of protein stability and reactions by weakly interacting cosolvents. Adv. Protein Chem 54, pp 355-431; 1998
17. Narhi, L.O., Philo, J.S., Li, T., Zhang, M., Samal, B., Arakawa, T.:Induction of α-helix in the β-sheet protein Tumor Necrosis Factor-α: Acid-Induced Denaturation. Biochemistry 35, pp 11454-11460; 1996
18. Roychaudhuri, R., Sarath, G., Zeecec, M., Markwell, M.J.:Stability of the allergenic soybean Kunitz trypsin inhibitor. Biochimica et Biophysica Acta 1699, pp 207– 212; 2004
19. Roychaudhuri, R., Sarath, G., Zeecec, M., Markwell, J.:Reversible denaturation of the soybean Kunitz trypsin inhibitor. Archives of Biochemistry and Biophysics 412, pp 20-26; 2003
20. Woody, R.W., Dunker, A.K.:Aromatic and cystine side-chain circular dichroism in proteins, in: G.D. Fasman, Circular Dichroism and the Conformational Analysis of Biomolecules. New York, pp 109-157; 1996
21. Schwert, G.W., Takenaka, Y.:A spectrophotometric determination of trypsin and chymotrypsin. Biochim. Biophys. Acta 16, pp 570-575; 1955
22. Simon, L.M., Kotormán, M., Garab, G., Laczkó, I.:Structure and activity of trypsin and α-chymotrypsin in aqueous organic media. Biochem. Biophys. Res. Commun. 280, pp 1367-1371; 2001
23. Li, Z., Stafford, W.F., Bouvier, M.:The metal ion binding properties of calreticulin modulate its conformational flexibility and thermal stability. Biochemistry 40, pp 1193-11201; 2001
24. Yang, W., Lee, H-W., Hellinga, H., Yang, J.J.:Structural analysis, identification and design of calcium-binding sites in proteins. Proteins 47, pp 344-356; 2002