簡易檢索 / 詳目顯示

研究生: 李俊奇
Li, Chun-Chi
論文名稱: pH值及鋅離子濃度 對胰蛋白酶活性及結構之影響
Effects of pH Value and Zn2+ Concentration on bioactivity and structure of Trypsin
指導教授: 黃福永
Huang, Fu-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 86
中文關鍵詞: 胰蛋白?鋅離子
外文關鍵詞: trypsin, zinc
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   利用紫外線光譜、圓二色光譜、螢光光譜來探討在不同濃度鋅離子、不同pH值環境下,對胰蛋白酶(trypsin)之活性及結構的影響。實驗的結果顯示出:當有鋅離子存在時,會對胰蛋白酶形成抑制作用(非競爭性的)。在[Zn2+]=166mM,pH 7.16下,相對於不加鋅離子,活性下降最大可達33.57%;在[Zn2+]=166mM,pH值(由7.16 → 6.5)下時也會使得胰蛋白酶的活性下降,相對於不加鋅離子,活性下降最大可達42.92%。在Far-UV CD的圖譜中發現,在有鋅離子存在的胰蛋白酶溶液,其二級結構會有明顯的變化,隨[Zn2+]增加α-helix成份比例明顯增加;改變pH值時也會造成類似的結果。在Near-UV CD的圖譜中發現,當加入鋅離子或是改變pH值時,對於三級結構並沒有造成明顯的變化,只有在光譜的強度方面發生些微的改變,而這也代表著胰蛋白酶的局部的構形發生變化。在螢光光譜中發現,ANS、Trp、MIANS螢光光譜在加入鋅離子時都會造成胰蛋白酶表面疏水性區域增加,當使pH值下降時,我們也發現胰蛋白酶表面疏水性區域增加的幅度隨pH值下降而下降。因此,綜合上述光譜的結果,發現當加入不同濃度鋅離子及改變pH值都會造成胰蛋白酶活性和結構上的改變。

      Circular Dichroism (CD) and fluorescence Spectroscopy have been used to investigate the effects of pH value and Zn2+ concentration on the bioactivity and structure of trypsin. It was found that the existence of the Zn2+ is capable of affecting the hydrolytic ability of trypsin on the substrate of N-benzoyl arginine ethyl ester (BAEE). The inhibition of Zn2+ on trypsin is uncompetitive binding at a site different from that of BAEE. When [Zn2+] = 166 mM and at pH 7.16, the initial hydrolytic rate toward BAEE was dropped 33.57%; furthermore, with the same concentration of Zn2+and pH 6.5, it was found that 42.92% of the activity was lost. In order to investigate the structural change of trypsin under this condition, CD and Fluorescence spectra were measured. Far-UV CD spectra showed that the existence of Zn2+ caused the percentage of 2o structural component of α-helix increased with the increasing of Zn2+ concentration. And the deviation of pH from 8 also resulted in the same results. However, the Near-UV CD spectra indicated the tertiary structure of trypsin did not show obvious changes, except little decreasing of intensity, suggesting the structural changes caused due to the binding of Zn2+ was a local alteration. ANS, Trptophan and MIANS fluorescence spectra showed that the hydrophobic region increased with the existence of Zn2+, indicative of more tryptophan resides and aromatic side chain containing amino acid residues exposed; however, when pH value was in acidic condition, the hydrophobic region was decreased, suggesting low pH value is not a good condition for trypsin hydrolytic activity.

    目錄 中文摘要………………………………………………………………………і 英文摘要……………………………………………………………………..і і 目錄…………………………………………………………………………і і і 表目錄……………………………………………………………………….. v 圖目錄………………………………………………………………………..vі 第一章 序論 1 一、酵素……………………………………………………………………….1 二、酵素的命名………………………………………………………………1 三、酵素的構成………………………………………………………………2 四、酵素催化反應與機制……………………………………………………4 五、酵素動力學及各動力學數值代表的意義………………………………8 六、酵素的抑制……………………………………………………………...14 七、蛋白酶(proteinase)………………………………………………………16 1.依催化機制分類...…………………………………………………….16 2.同一類蛋白酶具相似序列及構形……………………………………17 3.類似核酸的intron與exon,也有自我剪接的現象………………….17 八、研究的動機……………………………………………………………..18 第二章 實驗 32 一、 材料…………………………………………………………………...32 二、 儀器設備……………………………………………………………...32 三、 實驗方法……………………………………………………………...33 1. 溶劑的配製…………………………………………………………...33 2. 紫外光的測量.......................................................................................34 3. 螢光的測量…………………………………………………………...34 4. 圓二色光譜的測量…………………………………………………...35 第三章 結果與討論 42 1. 紫外光譜……………………………………………………………...42 2. 圓二色光譜(Circular Dichroism spectra)…………………………….43 3. 螢光光譜……………………………………………………………...45 4. 結論…………………………………………………………………...48 參考文獻…………………………………………………………………84

    參考文獻
    1. Dörnyei, A., Kilyén, M., Kiss, T., Gyurcsik, B., Laczkó, I., Pécsváradi, A., Ssimon, L.M., Kotormán, M.:The effects of Al(Ⅲ) speciation on the activity of trypsin. Journal of Inorganic Biochemistry 97, pp 118-123; 2003
    2. Kotormán, M., Laczkó, I., Szabó, A. and Simon, L.M.:Effects of Ca2+ on catalytic activity and conformation of trypsin and α-chymotrypsin in aqueous ethanol. Biochemical and Biophysical Research Communications 304, pp 18-21; 2003
    3. Spreti, N., Profio, P.D., Marte, L., Bufali, S., Brinchi, L. and Gianfranco, S.:Activation and stabilization of α-chymotrypsin by cationic additives. Eur. J. Biochem 268, pp 6491-6497; 2001
    4. Simon, L.M., László, K., Vértesi, A., Bagi, K. and Szajáni, B.:Stability of hydrolytic enzymes in water-organic solvent systems. Journal of Molecular Catalysis B: Enzymatic 4, pp 41-45; 1998
    5. Joseph, P., Lakowicz, J.:Principles of Fluorescence Spectroscopy2nd. Kluwer Academic, pp 698-701; 1999
    6. Krasnowska, E.K., Gratton, E., Parasassi, T.:Prodan as a Membrane Surface Fluorescence Probe:Partitioning between water and phospholipid phases. Biophysical Journal 74, pp 1984-1993; 1998
    7. Gupte, S.S., and Lane, L.K.:Reaction of purified (Na,K)-ATPase with the fluorescent sulfhydryl probe 2-(4’-maleimidylanilino) naphthalene 6-sulfonic acid. Characterization and the effects of ligands. J Biol Chem 254, pp 10362-10369; 1979
    8. Nelson, D.L., Cox, M.M.:Lehninger Principles of Biochemistry3nd. Worth, pp 243-289; 2000
    9. Juang,R.H:Enzyme Biochemistry Laboratory. pp 73-88; 2000
    10. Manavalan, P. and Johnson, W.C.:Sensitivity of circular dichroism to protein tertiary structure class. Letters to Nature 305, pp 831-832; 1933
    11. Jacson, M., Haris, P.I.., Chapman, D.:Fourier transorm infrared spectroscopic studies of Ca2+-binding proteins. Biochemistry 30, pp 9681-9686; 1991
    12. Kidd, R.D., Yennawar, H.P., Sears, P., Wong, C.H., Farber, G.K.:A weak calcium binding site in subtilisin BPN’ has a dramatic effect on protein stability. J. Am. Chem 118, pp 1645-1650; 1996
    13. Provencher, S.W., Glöckner, J.:Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20, pp 33-37; 1981
    14. Kahn, P.C.:The interpretation of near-ultraviolet circular dichroism. Methods Enzymol 61, pp 339-377; 1979
    15. Andley UP, Liang JN, Chakrabarti B.:Fluorescent probes for polar-polar nature and sulfhydryl group accessibility. Biochemistry 21, pp 1853-1858; 1982
    16. Timasheff, S.N.:Control of protein stability and reactions by weakly interacting cosolvents. Adv. Protein Chem 54, pp 355-431; 1998
    17. Narhi, L.O., Philo, J.S., Li, T., Zhang, M., Samal, B., Arakawa, T.:Induction of α-helix in the β-sheet protein Tumor Necrosis Factor-α: Acid-Induced Denaturation. Biochemistry 35, pp 11454-11460; 1996
    18. Roychaudhuri, R., Sarath, G., Zeecec, M., Markwell, M.J.:Stability of the allergenic soybean Kunitz trypsin inhibitor. Biochimica et Biophysica Acta 1699, pp 207– 212; 2004
    19. Roychaudhuri, R., Sarath, G., Zeecec, M., Markwell, J.:Reversible denaturation of the soybean Kunitz trypsin inhibitor. Archives of Biochemistry and Biophysics 412, pp 20-26; 2003
    20. Woody, R.W., Dunker, A.K.:Aromatic and cystine side-chain circular dichroism in proteins, in: G.D. Fasman, Circular Dichroism and the Conformational Analysis of Biomolecules. New York, pp 109-157; 1996
    21. Schwert, G.W., Takenaka, Y.:A spectrophotometric determination of trypsin and chymotrypsin. Biochim. Biophys. Acta 16, pp 570-575; 1955
    22. Simon, L.M., Kotormán, M., Garab, G., Laczkó, I.:Structure and activity of trypsin and α-chymotrypsin in aqueous organic media. Biochem. Biophys. Res. Commun. 280, pp 1367-1371; 2001
    23. Li, Z., Stafford, W.F., Bouvier, M.:The metal ion binding properties of calreticulin modulate its conformational flexibility and thermal stability. Biochemistry 40, pp 1193-11201; 2001
    24. Yang, W., Lee, H-W., Hellinga, H., Yang, J.J.:Structural analysis, identification and design of calcium-binding sites in proteins. Proteins 47, pp 344-356; 2002

    下載圖示 校內:立即公開
    校外:2004-08-13公開
    QR CODE