簡易檢索 / 詳目顯示

研究生: 陳柏儒
Chen, Po-Ju
論文名稱: 經皮迷走神經刺激的神經行為效應:刺激參數對內感受的影響及心臟誘發電位作為行為表現變化的預測指標
Neurobehavioral Effects of Transcutaneous Vagus Nerve Stimulation: Parameter-Specific Impact on Interoception and Predictive Role of Heartbeat-Evoked Potentials
指導教授: 詹慧伶
Chan, Hui-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 53
中文關鍵詞: 經皮耳迷走神經刺激內感受心臟誘發電位心跳計數任務腦電圖心電圖
外文關鍵詞: Transcutaneous auricular vagus nerve stimulation (taVNS), Interoception, Heartbeat- Evoked Potential (HEP), Heartbeat Counting Task, Electroencephalogram (EEG), Electro- cardiogram (ECG)
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經皮耳迷走神經刺激是一種調節認知與生理功能的非侵入性技術。此技術的一項關鍵調控目標為內感受—即對身體內部狀態的感知,此能力與情緒調節及心理健康密切相關。儘管經皮耳迷走神經刺激的潛力已被證實,其最佳刺激參數與能預測療效的客觀生物標記仍有待確立。本研究目的在系統性比較不同經皮耳迷走神經刺激參數對內感受準確度的影響,並驗證心臟誘發電位作為預測行為改善的生物標記之可行性。
    本研究首先透過一項前導研究,比較不同刺激參數對心臟誘發電位的影響,從而 篩選出具潛力的參數。據此,主要實驗最終納入 33 名健康受試者進行分析,採用前 後測設計,比較兩種新篩選的參數(刺激耳屏,刺激頻率為 25 或 30 Hz,脈衝寬度 為 250 μs)與一種常用參數(刺激耳甲腔,刺激頻率為 25 Hz,脈衝寬度為 250 μs) 對內感受準確度的影響,此準確度為透過心跳計數任務進行測量。實驗全程同步記 錄腦波與心電圖資料。
    行為結果顯示,三種測試參數均顯著提升內感受準確度的整體準確度。將經三個 參數刺激後的內感受準確度與刺激前相比,耳甲腔參數的提升比例最高,同時數據 亦顯示部分受試者僅在耳屏刺激參數下獲得改善,此發現凸顯了經皮耳迷走神經刺 激效果的個體化差異。從神經生理資料的分析進一步發現,刺激前的心臟誘發電位 可作為關鍵預測指標:在額葉中線的 Fz 電極,心電圖 R 波後 350–500 毫秒時段內 的平均心臟誘發電位振幅,與受試者在經皮耳迷走神經刺激介入後的內感受準確度 「改善幅度」呈現顯著正相關。
    總結而言,本研究不僅證實特定經皮耳迷走神經刺激參數能有效增強內感受表現並揭示其效果具有個體差異性,更確立了刺激前的晚期心臟誘發電位成分可作為預測經皮耳迷走神經刺激行為改善效益的潛在生物標記,為未來發展個人化神經調控方案提供了關鍵的實證基礎。

    Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive technique used to modulate cognitive and physiological functions. A key regulatory target is interoception—the perception of internal bodily states—closely linked to emotion regulation and mental well-being. Although taVNS's potential is demonstrated, optimal stimulation parameters and predictive biomarkers remain unclear. This study systematically compares different taVNS parameters on interoceptive accuracy and evaluates heartbeat-evoked potential (HEP) as a biomarker for predicting behavioral improvement.
    This research began with a pilot study to compare the effects of different stimulation parameters on the HEP, which allowed for the selection of promising parameters. Following this, the main experiment involved 33 healthy participants in a pre-post design. It compared the effects of two newly selected parameters (stimulating the tragus at a frequency of 25 or 30 Hz with a pulse width of 250 μs) against a commonly used parameter (stimulating the cymba conchae at 25 Hz with a 250 μs pulse width) on interoceptive accuracy, measured via a heartbeat counting task. EEG and ECG data were recorded simultaneously throughout the experiment.
    Behavioral results indicated that all three tested parameters significantly improved overall interoceptive accuracy. When comparing post-stimulation accuracy to pre-stimulation levels, the cymba conchae parameter showed the highest proportion of improvement. At the same time, the data also revealed that some participants only showed improvement with the tragus stimulation parameters, a finding that highlights individual differences in the effects of taVNS. Further analysis of the neurophysiological data found that pre-stimulation HEP can serve as a key predictive indicator: the mean HEP amplitude at the midline frontal Fz electrode, within the 350–500 millisecond window after the ECG R-peak, showed a significant positive correlation with the magnitude of improvement in interoceptive accuracy after the taVNS intervention.
    In conclusion, this study not only confirms that specific taVNS parameters can effectively enhance interoceptive performance and reveals individual variability in its effects, but it also establishes the pre-stimulation, late-latency HEP component as a potential biomarker for predicting the behavioral benefits of taVNS. These findings provide a critical empirical foundation for the future development of personalized neuromodulation protocols.

    摘要 i Abstract ii 誌謝 iii Table of Contents iv List of Tables vi List of Figures vii List of symbols viii Chapter 1. Introduction 1 1.1. Background 1 1.1.1. Transcutaneous auricular vagus nerve stimulation (taVNS) 1 1.1.2. Interoception: the sense of the internal body 1 1.1.3. The vagal pathway to interoception 2 1.1.4. Quantifying interoceptive accuracy 2 1.2. Motivation 4 1.3. Related work 4 1.3.1. Interoception measurement methods 4 1.3.2. HEP as a neural marker of interoception 5 1.3.3. TaVNS effects on interoception 5 1.4. Hypotheses 5 1.5. Thesis scope 6 Chapter 2. Materials and Methods 7 2.1. Research framework and overview 7 2.2. Experiment 1: Parameter screening of taVNS effects on resting-state HEP (Pilot Study) 8 2.2.1. Participants 8 2.2.2. Experimental procedure 8 2.2.3. TaVNS parameters 9 2.2.4. Physiological and neural data acquisition 10 2.2.5. Data preprocessing and analysis 10 2.3. Experiment 2: Comparative evaluation of selected taVNS parameters on HCT performance (main study) 11 2.3.1. Participants 11 2.3.2. Materials and procedure 11 2.4. Data analysis (main study) 16 2.4.1. Signal Preprocessing 16 2.4.2. Calculation of heartbeat counting accuracy 16 2.4.3. Participant grouping 17 2.4.4. Behavior data analysis 17 2.4.5. Exploratory analysis: Relationship between heart rate and interoceptive accuracy 18 2.4.6. HEP data analysis 19 2.4.7. Analysis of self-reported interoceptive awareness (MAIA-2) 21 2.4.8. Declaration of Generative AI in Manuscript Preparation 21 Chapter 3. Results 22 3.1. Pilot study: Parameter screening results 22 3.2. Behavioral results: IAc 23 3.2.1. Effect of taVNS parameters on IAc 23 3.2.2. Condition–order control 24 3.2.3. Group differences: Responders vs. Non-Responders 26 3.2.4. Baseline IAc as a predictor of improvement (∆IAc) across taVNS conditions 27 3.2.5. Relationship between heart rate and interoceptive accuracy 28 3.3. Neurophysiological results: HEP 29 3.3.1. Replication and modulation of the late HEP component (at 548 ms) 29 3.3.2. Exploratory topographical analyses based on grouped performance 30 3.3.3. Baseline HEP predicts ∆IAc across taVNS conditions 32 3.3.4. ∆HEP predicts ∆IAc across taVNS conditions 34 3.3.5. Correlation between baseline HEP and self-rated interoceptive awareness 35 Chapter 4. Discussion 38 4.1. Summary of findings 38 4.2. Behavioral Efficacy and Heterogeneity 38 4.3. Predicting individual gains: Neural State vs. traits 39 4.4. Limitations and future directions 39 Chapter 5. Conclusion 40 References 41

    [1] Jiliang Fang, Peijing Rong, Yang Hong, Yangyang Fan, Jun Liu, Honghong Wang, Guolei Zhang, Xiaoyan Chen, Shan Shi, Liping Wang, Rupeng Liu, Jiwon Hwang, Zhengjie Li, Jing Tao, Yang Wang, Bing Zhu, and Jian Kong. Transcutaneous Vagus Nerve Stimulation Modulates Default Mode Network in Major Depressive Disorder. Biological Psychiatry, 79(4):266–273, 2016.
    [2] Andreas M. Burger and Bart Verkuil. Transcutaneous nerve stimulation via the tragus: are we really stimulating the vagus nerve? Brain Stimulation, 11(4):945–946, 2018.
    [3] John M. Karemaker. The multibranched nerve: vagal function beyond heart rate variability. Biological Psychology, 172:108378, 2022.
    [4] Kirsteen N. Browning, Simon Verheijden, and Guy E. Boeckxstaens. The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation. Gastroenterology, 152(4):730–744, 2017.
    [5] Magdalena Ferstl, Anne Kühnel, Johannes Klaus, Wy Ming Lin, and Nils B. Kroemer. Non-invasive vagus nerve stimulation conditions increased invigoration and wanting in depression. Comprehensive Psychiatry, 132:152488, 2024.
    [6] Xiaolu Zhou, Fen Ren, Simon SY Lui, and Raymond CK Chan. Interoception, somatic symptoms, and somatization tendency in chinese individuals with subsyndromal depression: A follow-up study. PsyCh Journal, 13(4):616–624, 2024.
    [7] Jiaoyan Pang, Xiaochen Tang, Hui Li, Qiang Hu, Huiru Cui, Lanlan Zhang, Wei Li, Zhuoying Zhu, Jijun Wang, and Chunbo Li. Altered interoceptive processing in generalized anxiety disorder—a heartbeat-evoked potential research. Frontiers in psychiatry, 10:616, 2019.
    [8] Lan Hu, Hui He, Neil Roberts, Jiajia Chen, Guojian Yan, Li Pu, Xufeng Song, and Cheng Luo. Insular dysfunction of interoception in major depressive disorder: from the perspective of neuroimaging. Frontiers in Psychiatry, 14:1273439, 2023.
    [9] Wei He, Xiang-Hong Jing, Bing Zhu, Xin-Long Zhu, Liang Li, Wan-Zhu Bai, and Hui Ben. The auriculo-vagal afferent pathway and its role in seizure suppression in rats. BMC neuroscience, 14(1):85, 2013.
    [10] Oliver G Cameron. Visceral sensory neuroscience: Interoception. Oxford University Press, 2001.
    [11] Arthur D Craig. How do you feel? interoception: the sense of the physiological condition of the body. Nature reviews neuroscience, 3(8):655–666, 2002.
    [12] Siyu Zhu, Xiaolu Zhang, Menghan Zhou, Keith M Kendrick, and Weihua Zhao. Therapeutic applications of transcutaneous auricular vagus nerve stimulation with potential for application in neurodevelopmental or other pediatric disorders. Frontiers in Endocrinology, 13:1000758, 2022.
    [13] A. Dale and D. Anderson. Information variables in voluntary control and classical conditioning of heart rate: field dependence and heart-rate perception. Perceptual and Motor Skills, 47(1):79–85, 1978.
    [14] Rainer Schandry. Heart Beat Perception and Emotional Experience. Psychophysiology, 18(4):483–488, 1981.
    [15] Amie Wallman-Jones and Mirko Schmidt. How physical activity can help you listen to your body.
    [16] Olga Pollatos and Rainer Schandry. Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential. Psychophysiology, 41(3):476–482, 2004.
    [17] Frederike H. Petzschner, Lilian A. Weber, Katharina V. Wellstein, Gina Paolini, Cao Tri Do, and Klaas E. Stephan. Focus of attention modulates the heartbeat evoked potential. NeuroImage, 186:595–606, 2019.
    [18] Sandra Mai, Chung Ki Wong, Eleana Georgiou, and Olga Pollatos. Interoception is associated with heartbeat-evoked brain potentials (HEPs) in adolescents. Biological Psychology, 137:24–33, 2018.
    [19] Mindaugas Baranauskas, Aida Grabauskaitė, Inga Griškova-Bulanova, Benedikta Lataitytė-Šimkevičienė, and Rytis Stanikūnas. Heartbeat evoked potentials (hep) capture brain activity affecting subsequent heartbeat. Biomedical Signal Processing and Control, 68:102731, 2021.
    [20] Albertyna Osińska, Andrzej Rynkiewicz, Marek Binder, Tomasz Komendziński, Anna Borowicz, and Antoni Leszczyński. Non-invasive Vagus Nerve Stimulation in Treatment of Disorders of Consciousness - Longitudinal Case Study. Frontiers in Neuroscience, 16:834507, 2022.
    [21] Till Bömmer, Luisa M. Schmidt, Katharina Meier, Julius Kricheldorff, Heiko Stecher, Christoph S. Herrmann, Christiane M. Thiel, Kathrin Janitzky, and Karsten Witt. Impact of Stimulation Duration in taVNS-Exploring Multiple Physiological and Cognitive Outcomes. Brain Sciences, 14(9):875, 2024.
    [22] ES Katkin, SD Reed, and C Deroo. A methodological analysis of 3 techniques for the assessment of individual-differences in heartbeat detection. In Psychophysiology, volume 20, pages 452–452. SOC PSYCHOPHYSIOL RES 1010 VERMONT AVE NW SUITE 1100, WASHINGTON, DC 20005, 1983.
    [23] Christopher Ring and Jasper Brener. Heartbeat counting is unrelated to heartbeat detection: A comparison of methods to quantify interoception. Psychophysiology, 55(9):e13084, 2018.
    [24] Elmar T. Peuker and Timm J. Filler. The nerve supply of the human auricle. Clinical Anatomy (New York, N.Y.), 15(1):35–37, 2002.
    [25] Alkomiet Hasan, Claus Wolff-Menzler, Sebastian Pfeiffer, Peter Falkai, Elif Weidinger, Andrea Jobst, Imke Hoell, Berend Malchow, Peyman Yeganeh-Doost, Wolfgang Strube, Silke Quast, Norbert Müller, and Thomas Wobrock. Transcutaneous non-invasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: a bicentric randomized controlled pilot study. European Archives of Psychiatry and Clinical Neuroscience, 265(7):589–600, 2015.
    [26] V. Villani, M. Tsakiris, and R. T. Azevedo. Transcutaneous vagus nerve stimulation improves interoceptive accuracy. Neuropsychologia, 134:107201, 2019.
    [27] P Perakakis. Heplab: a matlab graphical interface for the preprocessing of the heartbeatevoked potential. Zenodo, 2019.
    [28] Arnaud Delorme and Scott Makeig. Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis. Journal of neuroscience methods, 134(1):9–21, 2004.
    [29] Wolf E. Mehling, Michael Acree, Anita Stewart, Jonathan Silas, and Alexander Jones. The Multidimensional Assessment of Interoceptive Awareness, Version 2 (MAIA-2). PLOS ONE, 13(12):e0208034, 2018.
    [30] Beatrice Bretherton, Lucy Atkinson, Aaron Murray, Jennifer Clancy, Susan Deuchars, and Jim Deuchars. Effects of transcutaneous vagus nerve stimulation in individuals aged 55 years or above: potential benefits of daily stimulation. Aging (albany NY), 11(14):4836, 2019.
    [31] Dorothea D Jenkins, Hunter G Moss, Lauren E Adams, Sally Hunt, Morgan Dancy, Sarah M Huffman, Daniel Cook, Jens H Jensen, Philipp Summers, Sean Thompson, et al. Higher dose noninvasive transcutaneous auricular vagus nerve stimulation increases feeding volumes and white matter microstructural complexity in open-label study of infants slated for gastrostomy tube. The Journal of pediatrics, 262:113563, 2023.
    [32] Lin-Lin Shen, Jin-Bo Sun, Xue-Juan Yang, Hui Deng, Wei Qin, Meng-Yu Du, LingXia Meng, Nan Li, Xiao-Yu Guo, Wen-Zhou Qiao, et al. Reassessment of the effect of transcutaneous auricular vagus nerve stimulation using a novel burst paradigm on cardiac autonomic function in healthy young adults. Neuromodulation: Technology at the Neural Interface, 25(3):433–442, 2022.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE