簡易檢索 / 詳目顯示

研究生: 李姿穎
Li, Tzu-Ying
論文名稱: 不同培養條件對Thermosynechococcus sp. CL-1之固碳效率及玉米黃素、β胡蘿蔔素產率的影響
Effects of cultivation conditions on the CO2 fixation rate and production of zeaxanthin and β-carotene by Thermosynechococcus sp. CL-1
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 122
中文關鍵詞: Thermosynechococcus sp. CL-1二氧化碳光照強度氮源濃度鹽度玉米黃素β胡蘿蔔素
外文關鍵詞: Cyanobacteria, Thermosynechococcus sp. CL-1, Light intensity, DIN concentration, Salinity, Zeaxanthin, β-carotene
相關次數: 點閱:139下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業革命的興起大氣中的二氧化碳濃度上升,造成溫室效應加劇全球氣候變遷。各界開始找尋各種碳捕獲與封存(CCS)技術以降低大氣中的碳含量。其中利用生物固碳法被視為具有潛力發展及永續性。
    藍綠菌在生長期間可捕捉二氧化碳並同時生產具有保健功用的玉米黃素、β胡蘿蔔素。玉米黃素、β胡蘿蔔素為藍色捕光色素,具有抗氧化能力,因此被認定為有助於健康的成分可應用於保健食品當中。玉米黃素、β胡蘿蔔素為視網膜主要色素,玉米黃素主要存在於黃斑部分,攝取玉米黃素及β胡蘿蔔素可預防白內障、老年性黃斑部病變(AMD)等眼部病變。
    光強度、氮源濃度及鹽度可能是影響藍綠菌玉米黃素、β胡蘿蔔素累積的關鍵因素。在本研究中,利用嗜熱藍綠菌Thermosynechococcus sp. CL-1 (TCL-1)以評估在不同光照強度(500、1,000、1,500 μE m-2 s-1),氮源濃度(1.2-29.2mM)與鹽度(0.14, 0.3, 0.5 M)培養下,其生質體產率、二氧化碳固定速率和玉米黃素、β胡蘿蔔素產率的影響。
    研究結果顯示,最大生質體產率發生在光照強度為1,000 μE/m2/s和5.8 mM初始氮源濃度下為90.3 ± 3.9 mg/L/h。最大固碳速率為129.1 ± 5.5 mg/L/h,最大玉米黃素產率為0.074 mg/L/h、β胡蘿蔔素產率為0.39 mg/L/h。
    由本研究之結果可知,固碳速率與玉米黃素、β胡蘿蔔素產率的最大影響因素皆在於生質體產率,其次才為細胞中碳含量與玉米黃素、β胡蘿蔔素含量。因此將本研究結果比較後,發現在以光照強度為1,000 μE/m2/s,氮源濃度為5.8 mM且鹽度為0.14 M培養下,有較優勢的生質體產率、固碳速率與玉米黃素、β胡蘿蔔素產率。

    Since industrial revolution, CO2 concentration in atmosphere has risen sharply. Excess green house gas (GHG) has influences on extreme weather and global warming. Carbon capture and sequestration (CCS) technologies are therefore under researched in recent decades to solve the problems. Biological carbon mitigation (BCM) was considered as a sustainable and potential process which uses autotrophic organisms such as microalgae and cyanobacteria to absorb CO2 from atmosphere through photosynthesis.
    In this study, the combination of the advantage of the chemical-alkaline-absorption and BCM is applied as the technology of carbon fixation from one of the main CO2 emission sources, power plant. CO2 has much more solubility in the alkaline solution and becomes HCO3- or CO32- as the carbon source for cyanobacteria. For meeting this practical requirement, thermophilic and basophilic cyanobacteria Thermosynechococcus sp. CL-1 (TCL-1) was chosen in this study. In order to increase the biomass productivity and carbon fixation rate, the higher surface-area-ratio flat panel was used as the photobioreactor (PBR) with high initial biomass concentration. Light intensity, DIN concentration and salinity have been needed as the operating parameters to affect the accumulation of the zeaxanthin and β-carotene in several researches.
    The results show TCL-1 can achieve the highest biomass productivity 90.3 mg/L/h, carbon fixation rate 129.1 ± 5.5 mg/L/h, biomass increment 38.0 ± 2.5%, the maximum zeaxanthin content 0.325 ± 0.009 mg/g at 8h, the maximum β-carotene content 1.92 ± 0.02 mg/g at 12h, the maximum zeaxanthin productivity 0.074 ± 0.004 mg/L/h at 8h, and the maximum β-carotene productivity 0.39 ± 0.03 mg/L/h at 12h if cultivated in the 5.8 mM initial DIN under 1,000 μE/m2/s with 0.14 M salinity.

    摘要 I Abstract II 致謝 IV Content A List of Figures E List of Tables H Nomenclature J Chapter 1 Introduction 1 1-1 Motivations 1 1-2 Objectives 5 Chapter 2 Literature Review 7 2-1 Global warming 7 2-2 Photosynthesis 9 2-2-1 Light process 9 2-2-2 Calvin cycle 11 2-3 Cyanobacteria 13 2-4 Carotenoids 15 2-4-1 Structure 15 2-4-2 Applications of carotenoids 21 2-5 Cultivation system 23 2-5-1 Cultivation system 23 2-5-2 Photobioreactor (PBR) 25 2-6 Influential factors for cyanobacteria 28 2-6-1 Light 28 2-6-2 Salinity 31 2-6-3 Nutrient 33 2-6-4 pH 35 2-6-5 Temperature 37 Chapter 3 Materials and method 39 3-1 Thermosynechococcus sp. CL-1 39 3-2 Chemical and Materials 40 3-2-1 Medium 40 3-2-2 Chemicals for carotenoids analysis 42 3-3 Experimental equipments 43 3-3-1 Cultivation equipments 43 3-3-2 Analysis equipments 44 3-3-3 Other equipments 46 3-4 Experimental Methods 48 3-4-1 Experimental process 48 3-4-2 Photosynthesis bioreactor 49 3-4-3 Conservation 51 3-4-4 Biomass source cultivation 51 3-4-5 Batch cultivation 53 3-5 Analysis method 54 3-5-1 Biomass concentration analysis 54 3-5-2 Specific growth rate and biomass productivity 55 3-5-3 CO2 fixation rate analysis 56 3-5-4 Carotenenoids analysis 57 3-5-5 Calculation of carotenoids productivity 58 3-6 Kinetic model 59 3-6-1 Monod equation 59 3-6-2 The Logistic regression 59 Chapter 4 Results and Discussion 61 4-1 Identification of major carotenoids 61 4-2 Effect of initial biomass concentration 63 4-3 Effect of light intensity 66 4-3-1 Biomass productivity and CO2 fixation rate 66 4-3-2 Medium utilization 70 4-3-3 Pigment content 72 4-4 Effect of initial DIN concentration 77 4-4-1 Biomass productivity and CO2 fixation rate 77 4-4-2 Medium utilization 82 4-4-3 Pigment content 84 4-5 Effect of salinity 88 4-5-1 Biomass productivity and CO2 fixation rate 88 4-5-2 Medium utilization 93 4-5-3 Pigment content 95 4-6 Time course 102 4-7 Kinetics 105 4-7-1 Monod equation 105 4-7-2 Logistic regression 106 Chapter 5 Conclusion and Suggestion 110 5-1 Conclusion 110 5-2 Suggestion 111 Chapter 6 References 112  

    Allakhverdiev, S.I., Nishiyama, Y., Miyairi, S., Yamamoto, H., Inagaki, N., Kanesaki, Y., Murata, N., (2002), “Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbAGenes in Synechocystis”. Plant Physiology 130, 1443-1453.
    Badger, M.R., (1987), “The CO2-concentrating mechanism in aquatic phototrophs”. The Biochemistry of plants: a comprehensive treatise (USA).
    Badger, M.R., Price, G.D., (1992), “The CO2 Concentrating Mechanism in Cyanobacteria and Microalgae”. Physiologia Plantarum 84, 606-615.
    Badger, M.R., Price, G.D., (2003), “CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution”. Journal of experimental botany 54, 609-622.
    Baudelet, P.-H., Gagez, A.-L., Bérard, J.-B., Juin, C., Bridiau, N., Kaas, R., Thiéry, V., Cadoret, J.-P., Picot, L., (2013), “Antiproliferative activity of Cyanophora paradoxa pigments in melanoma, breast and lung cancer cells”. Marine drugs 11, 4390-4406.
    Becker, W., (2004), “18 Microalgae in Human and Animal Nutrition”. Handbook of microalgal culture: biotechnology and applied phycology, 312.
    Berges, J.A., Charlebois, D.O., Mauzerall, D.C., Falkowski, P.G., (1996), “Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae”. Plant Physiology 110, 689-696.
    Bernstein, H.C., Konopka, A., Melnicki, M.R., Hill, E.A., Kucek, L.A., Zhang, S., Shen, G., Bryant, D.A., Beliaev, A.S., (2014), “Effect of mono- and dichromatic light quality on growth rates and photosynthetic performance of Synechococcus sp. PCC 7002”. Frontiers in Microbiology 5.
    Bhosale, P., Bernstein, P.S., (2005), “Microbial xanthophylls”. Applied microbiology and biotechnology 68, 445-455.
    Borowitzka, M.A., (2013), “High-value products from microalgae—their development and commercialisation”. Journal of Applied Phycology 25, 743-756.
    Boulay, C., Abasova, L., Six, C., Vass, I., Kirilovsky, D., (2008), “Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria”. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1777, 1344-1354.
    Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., Vítová, M., (2011), “Microalgae—novel highly efficient starch producers”. Biotechnology and Bioengineering 108, 766-776.
    Brune, D.E., Lundquist, T.J., Benemann, J.R., (2009), “Microalgal Biomass for Greenhouse Gas Reductions: Potential for Replacement of Fossil Fuels and Animal Feeds”. Journal of Environmental Engineering 135, 1136-1144.
    Bryant, D.A., Frigaard, N.-U., (2006), “Prokaryotic photosynthesis and phototrophy illuminated”. Trends in microbiology 14, 488-496.
    Burlew, J.S., (1953), “Algal culture”. From Laboratory to Pilot Plant, Carnegie Inst. Washington Publ 600, 1.
    Cabello, J., Toledo-Cervantes, A., Sánchez, L., Revah, S., Morales, M., (2015), “Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions”. Bioresource Technology 181, 128-135.
    Campenni, L., Nobre, B.P., Santos, C.A., Oliveira, A., Aires-Barros, M., Palavra, A., Gouveia, L., (2013), “Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions”. Applied microbiology and biotechnology 97, 1383-1393.
    Campenni’, L., Nobre, B.P., Santos, C.A., Oliveira, A.C., Aires-Barros, M.R., Palavra, A.M.F., Gouveia, L., (2013), “Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions”. Applied Microbiology and Biotechnology 97, 1383-1393.
    Carvalho, A.P., Meireles, L.A., Malcata, F.X., (2006), “Microalgal reactors: a review of enclosed system designs and performances”. Biotechnology progress 22, 1490-1506.
    Chen, H.-H., 2007. CO2-fixation by a Cyanobacterail strain, Thermosyenechococcus sp. CL-1, and its Potential Bopenergy Composition Analysis. Master thesis. National Cheng Kung University.
    Cho, E.Y., Hankinson, S.E., Rosner, B., Willett, W.C., Colditz, G.A., (2008), “Prospective study of lutein/zeaxanthin intake and risk of age-related macular degeneration”. American Journal of Clinical Nutrition 87, 1837-1843.
    Chu, H.M., 2014. Effects of cultivation condition and pretreatment of carbohydrate on the CO2 fixation and production of monosaccharide by Thermosynechococcus sp. CL-1. Master thesis. National Cheng Kung University.
    Coesel, S., Baumgartner, A., Teles, L., Ramos, A., Henriques, N., Cancela, L., Varela, J., (2008), “Nutrient Limitation is the Main Regulatory Factor for Carotenoid Accumulation and for Psy and Pds Steady State Transcript Levels in Dunaliella salina (Chlorophyta) Exposed to High Light and Salt Stress”. Marine Biotechnology 10, 602-611.
    Cogdell, R.J., Frank, H.A., (1987), “How carotenoids function in photosynthetic bacteria”. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics 895, 63-79.
    Cordero, B.F., Obraztsova, I., Couso, I., Leon, R., Vargas, M.A., Rodriguez, H., (2011), “Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis”. Marine drugs 9, 1607-1624.
    Cowan, A.K., Logie, M.R.R., Rose, P.D., Phillips, L.G., (1995), “Stress Induction of Zeaxanthin Formation in the β-Carotene Accumulating Alga Dunaliella salina Teod”. Journal of Plant Physiology 146, 554-562.
    Davis, A.D., 2007. Light-Dark FTIR Absorbance Difference Spectroscopy for the Study of Photosystem I. BROCK UNIVERSITY.
    de los Rios, A., Grube, M., Sancho, L.G., Ascaso, C., (2007), “Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks”. Fems Microbiology Ecology 59, 386-395.
    Del Campo, J.A., Moreno, J., Rodrı́guez, H., Vargas, M.A., Rivas, J.n., Guerrero, M.G., (2000), “Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp.(Chlorophyta)”. Journal of Biotechnology 76, 51-59.
    Dismukes, G.C., Carrieri, D., Bennette, N., Ananyev, G.M., Posewitz, M.C., (2008), “Aquatic phototrophs: efficient alternatives to land-based crops for biofuels”. Current Opinion in Biotechnology 19, 235-240.
    Donald, D.B., Bogard, M.J., Finlay, K., Bunting, L., Leavitt, P.R., (2013), “Phytoplankton-specific response to enrichment of phosphorus-rich surface waters with ammonium, nitrate, and urea”. PloS one 8, e53277.
    EIA, Monthly Energy Review, 2014, (http://205.254.135.7/totalenergy/data/monthly/#environment)
    Fernandes, T.A., Iyer, V., Apte, S.K., (1993), “Differential responses of nitrogen-fixing cyanobacteria to salinity and osmotic stresses”. Applied and environmental microbiology 59, 899-904.
    Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.D., (2008), “Advancesn in CO2 capture technology - The US Department of Energy's Carbon Sequestration Program”. International Journal of Greenhouse Gas Control 2, 9-20.
    Fresnedo, O., Gomez, R., Serra, J.L., (1991), “Carotenoid composition in the cyanobacterium Phormidium laminosum Effect of nitrogen starvation”. FEBS Letters 282, 300-304.
    Fu, W., Guðmundsson, Ó., Paglia, G., Herjólfsson, G., Andrésson, Ó.S., Palsson, B.Ø., Brynjólfsson, S., (2013), “Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution”. Applied microbiology and biotechnology 97, 2395-2403.
    García-González, M., Moreno, J., Manzano, J.C., Florencio, F.J., Guerrero, M.G., (2005), “Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor”. Journal of biotechnology 115, 81-90.
    Goodwin, T.W. (Ed.), 1984. The biochemistry of the carotenoids. Springer.
    Goodwin, T.W., 1993. [29] Biosynthesis of carotenoids: An overview. in: Lester, P. (Ed.). Methods in Enzymology. Academic Press, pp. 330-340.
    Grobbelaar, J., (1994), “Turbulence in mass algal cultures and the role of light/dark fluctuations”. Journal of Applied Phycology 6, 331-335.
    Grobbelaar, J., Nedbal, L., Tichý, V., (1996), “Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation”. Journal of Applied Phycology 8, 335-343.
    Grobbelaar, J.U., Nedbal, L., Tichy, L., Setlik, L., (1995), “Variation in some photosynthetic characteristics of microalgae cultured in outdoor thin-layered sloping reactors”. Journal of applied phycology 7, 175-184.
    Hadden, W.L., Watkins, R.H., Levy, L.W., Regalado, E., Rivadeneira, D.M., van Breemen, R.B., Schwartz, S.J., (1999), “Carotenoid composition of marigold (Tagetes erecta) flower extract used as nutritional supplement”. Journal of agricultural and food chemistry 47, 4189-4194.
    Hasegawa, P.M., Bressan, R.A., Zhu, J.-K., Bohnert, H.J., (2000), “Plant cellular and molecular responses to high salinity”. Annual review of plant biology 51, 463-499.
    Hirschberg, J., Chamovitz, D., 1994. Carotenoids in cyanobacteria. The molecular biology of cyanobacteria. Springer, pp. 559-579.
    Ho, S.-H., Chan, M.-C., Liu, C.-C., Chen, C.-Y., Lee, W.-L., Lee, D.-J., Chang, J.-S., (2014), “Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies”. Bioresource technology 152, 275-282.
    Ho, S.-H., Chen, C.-Y., Chang, J.-S., (2012), “Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N”. Bioresource Technology 113, 244-252.
    Hsueh, H.T., Chu, H., Chang, C.C., (2007a), “Identification and characteristics of a cyanobacterium isolated from a hot spring with dissolved inorganic carbon”. Environmental science & technology 41, 1909-1914.
    Hsueh, H.T., Chu, H., Yu, S.T., (2007b), “A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae”. Chemosphere 66, 878-886.
    Hsueh, H.T., Li, W.J., Chen, H.H., Chu, H., (2009), “Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta”. Journal of Photochemistry and Photobiology B: Biology 95, 33-39.
    IPCC, 2014. Climate Change 2014 Synthesis Report. IPCC.
    Jin, E., Feth, B., Melis, A., (2003), “A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions”. Biotechnology and bioengineering 81, 115-124.
    Jodłowska, S., Latała, A., (2013), “Combined effects of light and temperature on growth, photosynthesis, and pigment content in the mat-forming cyanobacterium Geitlerinema amphibium”. Photosynthetica 51, 202-214.
    Jodłowska, S., Śliwińska, S., (2014), “Effects of light intensity and temperature on the photosynthetic irradiance response curves and chlorophyll fluorescence in three picocyanobacterial strains of Synechococcus”. Photosynthetica 52, 223-232.
    Joset, F., Jeanjean, R., Hagemann, M., (1996), “Dynamics of the response of cyanobacteria to salt stress: Deciphering the molecular events”. Physiologia Plantarum 96, 738-744.
    Kaplan, A., Reinhold, L., (1999), “CO2 concentrating mechanisms in photosynthetic microorganisms”. Annual review of plant biology 50, 539-570.
    Kirst, G., (1990), “Salinity tolerance of eukaryotic marine algae”. Annual review of plant biology 41, 21-53.
    Kleinegris, D.M., Janssen, M., Brandenburg, W.A., Wijffels, R.H., (2010), “The selectivity of milking of Dunaliella salina”. Marine biotechnology 12, 14-23.
    Kleinegris, D.M., Janssen, M., Brandenburg, W.A., Wijffels, R.H., (2011), “Continuous production of carotenoids from Dunaliella salina”. Enzyme and microbial technology 48, 253-259.
    Kró, M., Maxwell, D.P., Huner, N.P., (1997), “Exposure of Dunaliella salina to low temperature mimics the high light-induced accumulation of carotenoids and the carotenoid binding protein (Cbr)”. Plant and cell physiology 38, 213-216.
    Kumar, K., Dasgupta, C.N., Nayak, B., Lindblad, P., Das, D., (2011), “Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria”. Bioresource Technology 102, 4945-4953.
    La Motta, E.J., (1976), “Kinetics of continuous growth cultures using the logistic growth curve”. Biotechnology and Bioengineering 18, 1029-1032.
    Lamers, P.P., van de Laak, C.C., Kaasenbrood, P.S., Lorier, J., Janssen, M., De Vos, R.C., Bino, R.J., Wijffels, R.H., (2010), “Carotenoid and fatty acid metabolism in light‐stressed Dunaliella salina”. Biotechnology and bioengineering 106, 638-648.
    Lers, A., Biener, Y., Zamir, A., (1990), “Photoinduction of massive β-carotene accumulation by the alga Dunaliella bardawil kinetics and dependence on gene activation”. Plant physiology 93, 389-395.
    Liu, J., Weinbauer, M.G., Maier, C., Dai, M., Gattuso, J.-P., (2010), “Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning”. Aquatic Microbial Ecology 61, 291-305.
    Los, D.A., Ray, M.K., Murata, N., (1997), “Differences in the control of the temperature‐dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803”. Molecular microbiology 25, 1167-1175.
    Lu, C., Torzillo, G., Vonshak, A., (1999), “Kinetic response of photosystem II photochemistry in the cyanobacterium Spirulina platensis to high salinity is characterized by two distinct phases”. Functional Plant Biology 26, 283-292.
    Lu, C., Vonshak, A., (2002), “Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells”. Physiologia Plantarum 114, 405-413.
    Lurling, M., Eshetu, F., Faassen, E.J., Kosten, S., Huszar, V.L.M., (2013), “Comparison of cyanobacterial and green algal growth rates at different temperatures”. Freshwater Biology 58, 552-559.
    MacColl, R., (1998), “Cyanobacterial phycobilisomes”. Journal of Structural Biology 124, 311-334.
    Mackey, D.J., Higgins, H.W., Mackey, M.D., Holdsworth, D., (1998), “Algal class abundances in the western equatorial Pacific: Estimation from HPLC measurements of chloroplast pigments using CHEMTAX”. Deep Sea Research Part I: Oceanographic Research Papers 45, 1441-1468.
    Mares-Perlman, J.A., Millen, A.E., Ficek, T.L., Hankinson, S.E., (2002), “The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview”. The Journal of nutrition 132, 518S-524S.
    Marxen, K., Vanselow, K.H., Hintze, R., Lippemeier, S., Ruser, A., Egge, B., Colijn, F., Hansen, U.-P., (2010), “Comparison of two different modes of UV-B irradiation on synthesis of some cellular substances in the cyanobacterium Synechocystis sp. PCC6803”. Journal of applied phycology 22, 677-690.
    Masamoto, K., Furukawa, K.-i., (1997), “Accumulation of zeaxanthin in cells of the cyanobacterium,< i> Synechococcus</i> sp. Strain PCC 7942 grown under high irradiance”. Journal of plant physiology 151, 257-261.
    Merzlyak, M.N., Chivkunova, O.B., Gorelova, O.A., Reshetnikova, I.V., Solovchenko, A.E., Khozin-Goldberg, I., Cohen, Z., (2007), “EFFECT OF NITROGEN STARVATION ON OPTICAL PROPERTIES, PIGMENTS, AND ARACHIDONIC ACID CONTENT OF THE UNICELLULAR GREEN ALGA PARIETOCHLORIS INCISA (TREBOUXIOPHYCEAE, CHLOROPHYTA)1”. Journal of Phycology 43, 833-843.
    Miller, A.G., Espie, G.S., Canvin, D.T., (1990), “Physiological aspects of CO2 and HCO3-transport by cyanobacteria: a review”. Canadian Journal of Botany 68, 1291-1302.
    Millie, D.F., Ingram, D.A., Dionigi, C.P., (1990), “PIGMENT AND PHOTOSYNTHETIC RESPONSES OF OSCILLATORIA AGARDHII (CYANOPHYTA) TO PHOTON FLUX DENSITY AND SPECTRAL QUALITY1”. Journal of phycology 26, 660-666.
    Miranda, H., Cheregi, O., Netotea, S., Hvidsten, T.R., Moritz, T., Funk, C., (2013), “Co-expression analysis, proteomic and metabolomic study on the impact of a Deg/HtrA protease triple mutant in Synechocystis sp. PCC 6803 exposed to temperature and high light stress”. Journal of Proteomics 78, 294-311.
    Moisander, P., McClinton, E., Paerl, H., (2002), “Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria”. Microbial Ecology 43, 432-442.
    Monod, J., (1949), “The growth of bacterial cultures”. Annual Reviews in Microbiology 3, 371-394.
    Munns, R., (2002), “Comparative physiology of salt and water stress”. Plant, cell & environment 25, 239-250.
    Murphy, L.R., Kinsey, S.T., Durako, M.J., (2003), “Physiological effects of short-term salinity changes on Ruppia maritima”. Aquatic Botany 75, 293-309.
    NOAAESRL, Trends in Atmospheric Carbon Dioxide, 2014, (www.esrl.noaa.gov/gmd/ccgg/trends/)
    Olajire, A.A., (2010), “CO2 capture and separation technologies for end-of-pipe applications – A review”. Energy 35, 2610-2628.
    Oren, A., (2005), “A hundred years of Dunaliella research: 1905–2005”. Saline Syst 1, 1-14.
    Pachauri, R.K., Reisinger, A., (2007), “Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change”. Climate change 2007, synthesis report.
    Paustian, T., 2000. Lithotrophic Bacteria - Rock Eaters.
    Pikuta, E.V., Hoover, R.B., Tang, J., (2007), “Microbial extremophiles at the limits of life”. Critical reviews in microbiology 33, 183-209.
    Pogoryelov, D., Sudhir, P.R., Kovács, L., Gombos, Z., Brown, I., Garab, G., (2003), “Sodium Dependency of the Photosynthetic Electron Transport in the Alkaliphilic Cyanobacterium Arthrospira platensis”. Journal of Bioenergetics and Biomembranes 35, 427-437.
    Prakash, J.S., Krishna, P.S., Sirisha, K., Kanesaki, Y., Suzuki, I., Shivaji, S., Murata, N., (2010), “An RNA helicase, CrhR, regulates the low-temperature-inducible expression of heat-shock genes groES, groEL1 and groEL2 in Synechocystis sp. PCC 6803”. Microbiology 156, 442-451.
    Price, G.D., Badger, M.R., von Caemmerer, S., (2011), “The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants”. Plant Physiology 155, 20-26.
    Pulz, O., (2001), “Photobioreactors: production systems for phototrophic microorganisms”. Applied microbiology and biotechnology 57, 287-293.
    Qiang, H., Richmond, A., (1996), “Productivity and photosynthetic efficiency ofSpirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor”. Journal of Applied Phycology 8, 139-145.
    Qiao, J., Huang, S., Te, R., Wang, J., Chen, L., Zhang, W., (2013), “Integrated proteomic and transcriptomic analysis reveals novel genes and regulatory mechanisms involved in salt stress responses in Synechocystis sp. PCC 6803”. Applied Microbiology and Biotechnology 97, 8253-8264.
    Richmond, A., Cheng-Wu, Z., Zarmi, Y., (2003), “Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition”. Biomolecular Engineering 20, 229-236.
    Rubio, F.C., Camacho, F.G., Sevilla, J., Chisti, Y., Grima, E.M., (2003), “A mechanistic model of photosynthesis in microalgae”. Biotechnology and bioengineering 81, 459-473.
    Saha, S.K., Moane, S., Murray, P., (2013), “Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18”. Bioresource Technology 147, 23-28.
    Sajilata, M., Singhal, R., Kamat, M., (2008), “The carotenoid pigment zeaxanthin—a review”. Comprehensive reviews in food science and food safety 7, 29-49.
    Schagerl, M., Müller, B., (2006), “Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria”. Journal of Plant Physiology 163, 709-716.
    Schubert, H., Fulda, S., Hagemann, M., (1993), “Effects of Adaptation to Different Salt Concentrations on Photosynthesis and Pigmentation of the Cyanobacterium Synechocystis sp. PCC 6803”. Journal of Plant Physiology 142, 291-295.
    Schubert, H., Hagemann, M., (1990), “Salt effects on 77K fluorescence and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803”. FEMS Microbiology Letters 71, 169-172.
    ScrippsCO2program, Monthly Average Carbon Dioxide Concentration, 2014, (http://scrippsco2.ucsd.edu/graphics_gallery/mauna_loa_record/mauna_loa_record.html)
    Seddon, J.M., Ajani, U.A., Sperduto, R.D., Hiller, R., Blair, N., Burton, T.C., Farber, M.D., Gragoudas, E.S., Haller, J., Miller, D.T., (1994), “Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration”. Jama 272, 1413-1420.
    Sheehan, J., Dunahay, T., Benemann, J., Roessler, P., 1998. A look back at the US Department of Energy's aquatic species program: biodiesel from algae.
    Shivaji, S., Prakash, J.S., (2010), “How do bacteria sense and respond to low temperature?”. Archives of Microbiology 192, 85-95.
    Singh, R., Sharma, S., (2012), “Development of suitable photobioreactor for algae production–A review”. Renewable and Sustainable Energy Reviews 16, 2347-2353.
    Singhal, G., 1999. Concepts in photobiology: photosynthesis and photomorphogenesis. Springer.
    Snodderly, D.M., (1995), “Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins”. The American journal of clinical nutrition 62, 1448S-1461S.
    Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., (2006), “Commercial applications of microalgae”. Journal of bioscience and bioengineering 101, 87-96.
    Stanier, R.Y., Cohenbazire, G., (1977), “Phototropic Prokaryotes - Cyanobacteria”. annual review of microbiology 31, 225-274.
    Steiger, S., Schäfer, L., Sandmann, G., (1999a), “High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis PCC 6803”. Journal of Photochemistry and Photobiology B: Biology 52, 14-18.
    Steiger, S., Schäfer, L., Sandmann, G., (1999b), “High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium< i> Synechocystis</i> PCC 6803”. Journal of Photochemistry and Photobiology B: Biology 52, 14-18.
    Su, C.M., Hsueh, H.T., Chen, H.H., Chu, H., (2012), “Effects of dissolved inorganic carbon and nutrient levels on carbon fixation and properties of Thermosynechococcus sp. in a continuous system”. Chemosphere 88, 706-711.
    Su, C.M., Hsueh, H.T., Chen, H.H., Chu, H., (2013a), “Effects of Nitrogen Availability on the Bioenergy Production Potential and CO2 Fixation of Thermosynechococcus CL-1 under Continuous Cultivation”. Aerosol and Air Quality Research 13, 1321-U1451.
    Su, C.M., Hsueh, H.T., Li, T.Y., Huang, L.C., Chu, Y.L., Tseng, C.M., Chu, H., (2013b), “Effects of light availability on the biomass production, CO2 fixation, and bioethanol production potential of Thermosynechococcus CL-1”. Bioresource Technology 145, 162-165.
    Sudhir, P., Murthy, S., (2004), “Effects of salt stress on basic processes of photosynthesis”. Photosynthetica 42, 481-486.
    Summerfield, T.C., Crawford, T.S., Young, R.D., Chua, J.P., Macdonald, R.L., Sherman, L.A., Eaton-Rye, J.J., (2013), “Environmental pH affects photoautotrophic growth of Synechocystis sp. PCC 6803 strains carrying mutations in the lumenal proteins of PSII”. Plant and Cell Physiology, pct036.
    Syiem, M.B., Nongrum, N.A., (2011), “Increase in intracellular proline content in Anabaena variabilis during stress conditions”. Journal of Applied and Natural Science 3, 119-123.
    Takaichi, S., (2011), “Carotenoids in algae: distributions, biosyntheses and functions”. Marine drugs 9, 1101-1118.
    Takeuchi, T., Utsunomiya, K., Kobayashi, K., Owada, M., Karube, I., (1992), “Carbon dioxide fixation by a unicellular green alga Oocystis sp”. Journal of Biotechnology 25, 261-267.
    Taylor, K.L., Brackenridge, A.E., Vivier, M.A., Oberholster, A., (2006), “High-performance liquid chromatography profiling of the major carotenoids in Arabidopsis thaliana leaf tissue”. Journal of Chromatography A 1121, 83-91.
    Terry, K.L., (1986), “Photosynthesis in modulated light: Quantitative dependence of photosynthetic enhancement on flashing rate”. Biotechnology and Bioengineering 28, 988-995.
    Thompson, A.W., Huang, K., Saito, M.A., Chisholm, S.W., (2011), “Transcriptome response of high-and low-light-adapted Prochlorococcus strains to changing iron availability”. The ISME journal 5, 1580-1594.
    Tredici, M.R., Zittelli, G.C., (1998), “Efficiency of sunlight utilization: tubular versus flat photobioreactors”. Biotechnology and bioengineering 57, 187-197.
    Ugwu, C., Aoyagi, H., Uchiyama, H., (2008), “Photobioreactors for mass cultivation of algae”. Bioresource technology 99, 4021-4028.
    Wang, X., Qin, B., Gao, G., Paerl, H.W., (2010), “Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation”. Journal of Plankton Research 32, 457-470.
    Xie, Y., Ho, S.-H., Chen, C.-N.N., Chen, C.-Y., Ng, I.S., Jing, K.-J., Chang, J.-S., Lu, Y., (2013), “Phototrophic cultivation of a thermo-tolerant Desmodesmus sp. for lutein production: Effects of nitrate concentration, light intensity and fed-batch operation”. Bioresource Technology 144, 435-444.
    Yamaoka, T., Satoh, K., Katoh, S., (1978), “Photosynthetic activities of a thermophilic blue-green alga”. Plant and Cell Physiology 19, 943-954.
    Zampatti, S., Ricci, F., Cusumano, A., Marsella, L.T., Novelli, G., Giardina, E., (2014), “Review of nutrient actions on age-related macular degeneration”. Nutrition Research 34, 95-105.
    Zhang, X.H., Spiegelman, D., Baglietto, L., Bernstein, L., Boggs, D.A., van den Brandt, P.A., Buring, J.E., Gapstur, S.M., Giles, G.G., Giovannucci, E., Goodman, G., Hankinson, S.E., Helzlsouer, K.J., Horn-Ross, P.L., Inoue, M., Jung, S., Khudyakov, P., Larsson, S.C., Lof, M., McCullough, M.L., Miller, A.B., Neuhouser, M.L., Palmer, J.R., Park, Y., Robien, K., Rohan, T.E., Ross, J.A., Schouten, L.J., Shikany, J.M., Tsugane, S., Visvanathan, K., Weiderpass, E., Wolk, A., Willett, W.C., Zhang, S.M.M., Ziegler, R.G., Smith-Warner, S.A., (2012), “Carotenoid intakes and risk of breast cancer defined by estrogen receptor and progesterone receptor status: a pooled analysis of 18 prospective cohort studies”. American Journal of Clinical Nutrition 95, 713-725.

    下載圖示 校內:2020-07-17公開
    校外:2020-07-17公開
    QR CODE