簡易檢索 / 詳目顯示

研究生: 梁惟捷
Liang, Wei-Jie
論文名稱: 模式與分散式壓縮感測之演算法、分析與應用
Model-based and Distributed Compressive Sensing: Algorithms, Analyses, and Applications
指導教授: 方永富
Fang, Yung-fu
共同指導教授: 呂俊賢
Lu, Chun-Shien
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 89
中文關鍵詞: 壓縮感測收斂凸最佳化合作式頻譜偵測分散式壓縮感測共有稀疏性超大影像同步正交匹配追蹤稀疏性
外文關鍵詞: Compressive sensing, Convergence, Convex optimization, Cooperative spectrum sensing, Distributed compressive sensing, Joint sparsity, Large-scale images, Simultaneous orthogonal matching pursuit, Sparsity
相關次數: 點閱:126下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓縮感測(CS)為信號處理的新領域,它可以用比Shannon-Nyquist rate更低的取樣頻率來完美重建信號。本論文分為三個部份,首先我們在超大影像重建上提出了一個透過樹狀結構結合稀疏性來求凸規劃的快速演算法。其可用來降低計算複雜度以及維持良好的回復品質。透過實驗比較可以驗証其有效性。
    第二個部份則是在分散式壓縮感測架構下討論信號彼此間的差異性和重建效能分析。由於之前的理論並沒有考慮信號間的關係,使得其理論結果皆退化回傳統架構的理論結果,但這樣和一般實驗模擬有出入。本研究理論推導出當信號彼間歐式距離越近,則效能會明顯提升。我們理論推導是建立在SOMP演算法上,但其概念可用於其他CS的貪婪算法上。實驗証實了當信號間歐式距離很短時,其效能有明顯地提升,而這與我們所提的理論相符。 在SOMP演算法中,我們也修改了某些步骤更進一步提升效能。
    最後應用的部份,我們則提出了在合作式頻譜偵測(CSS)中基於CS貪婪演算法的停止條件。我們分析且推導了與先驗知識(例如稀疏性)無關的停止條件。實驗証實了在CSS中,我們提出的停止條件對於偵測效能有顯著地提升。

    Compressive sensing (CS) has emerged as a new framework in signal processing which states that one may achieve an exact signal reconstruction from sufficient CS measurements even lower than the well-known Shannon-Nyquist theorem tells us. Cost-efficient compressive sensing of large-scale images with quickly reconstructed high-quality results is very challenging. We present an algorithm to solve convex optimization via the tree structure sparsity pattern, which can be run in the operator to reduce computation cost and maintain good quality, especially for large-scale images. The feasibility of our method is verified through simulations and comparison with state-of-the-art algorithms.

    On the other hand, distributed compressive sensing is a framework considering jointly sparsity within signal ensembles along with multiple measurement vectors (MMVs). The current theoretical bound of performance for MMVs, however, is derived to be the same with that for single MV (SMV) because the characteristics of signal ensembles are ignored. In this work, we introduce a new factor called ``Euclidean distances between signals' for the performance analysis of a deterministic signal model under MMVs framework. We show that, by taking the size of signal ensembles into consideration, MMVs indeed exhibit better performance than SMV. Although our concept can be broadly applied to CS algorithms with MMVs, the case study conducted on a well-known greedy solver called simultaneous orthogonal matching pursuit (SOMP) will be explored in this thesis. We show that the performance of SOMP, when incorporated with our concept by modifying the steps of support detection and signal estimations, will be improved remarkably, especially when the Euclidean distances between signals are short. The performance of modified SOMP is verified to meet our theoretical prediction.

    In application part, we proposed stopping criteria for greedy algorithm based on CS in cooperative spectrum sensing (CSS). We analyze and derive oracle stopping bounds that are independent of prior information such as sparsity for greedy algorithms. Simulations are provided to confirm that, in compressive cooperative spectrum sensing, the proposed stopping criteria for greedy algorithms can remarkably improve detection performance.

    Chapter 1. Introduction 1 1.A. Basic Theory 2 1.B. Sparse Signal Recovery 4 1.C. Optimization of Projection Matrix 7 1.D. Multiple Measurement Vectors 8 1.E. Organization 9 Chapter 2. Compressive Sensing of Large-Scale Image 11 2.A. Introduction 11 2.A.I. Strategies for Large Scale Compressive Image Sensing 11 2.A.II. Motivation and Contributions 12 2.B. Related Work 13 2.B.I. Compressive Image Sensing Exploiting Sparsity Patterns 13 2.B.II. Block Compressive Sensing 14 2.B.III. Tensor based Compressive Image Sensing 15 2.B.IV. State of the Art Convex Optimization Algorithms 16 2.B.V. Comparison 18 2.C. Large-Scale Compressive Image Sensing: Proposed Method 19 2.C.I. System Model 19 2.C.II. Fixed Point Method with Quasi-Armijo Rule (FP-qA) 20 2.C.III. Tree Structure Sparsity in Convex Optimization 21 2.C.IV. Convergence Analysis 23 2.D. Simulation 25 2.D.I. Parameter Setting 27 2.D.II. Performance Comparison 28 2.E. Conclusions 31 2.F. Appendix 31 2.F.I. Proof of Theorem 2.3.1 31 2.F.II. Proof of Theorem 2.3.2 35 Chapter 3. Performance Analysis with Distributed Compressive Sensing 37 3.A. Introduction 37 3.A.I. Motivation and Contributions 37 3.B. Preliminaries 38 3.C. Main Results 38 3.D. Experiments 43 3.E. Conclusion 44 3.F. Appendix 45 3.F.I. Proof of Theorem 3.3.1 45 3.F.II. Proof of Theorem 3.3.2 48 3.F.III. Proof of Theorem 3.3.3 50 3.F.IV. Proof of Corollary 3.3.1 52 3.F.V. Proof of Corollary 3.3.2 53 Chapter 4. Application in Cooperative Spectrum Sensing 56 4.A. Introduction 56 4.A.I. Related Work 57 4.B. MMVs in CS and CSS 59 4.B.I. MMVs in Compressed Sensing 59 4.B.II. MMVs in Cooperative Spectrum Sensing 60 4.C. Oracle Bound for Stopping Criteria in Greedy MMVs Algorithms 61 4.C.I. Preliminary 61 4.C.II. Stopping Criteria in Greedy MMVs Algorithm 63 4.D. Theoretical Analysis 66 4.D.I. Upper Bound of Measurements 66 4.D.II. Recovery Guarantee due to Distance between SU & PU in CSS 70 4.E. Simulation Results 71 4.E.I. Simulation Setting 71 4.E.II. Simulation under A fixed Set of Parameters 72 4.E.III. Simulations with Phase Transition 73 4.F. Conclusions 74 4.G. Appendix 75 4.G.I. Lower bound of q(w) 75 4.G.II. Relationship between h(w) and bF 76 4.G.III. Bounded Gaussian Noise 76 4.G.IV. Behavior of ∥AX∥F 78 Chapter 5. Conclusion 80 References 81

    [1] Cesar F Caiafa and Andrzej Cichocki. Computing sparse representations of multidimensional
    signals using kronecker bases. Neural computation, 25(1):186–220, 2013.
    [2] Cesar F Caiafa and Andrzej Cichocki. Stable, robust, and super fast reconstruction
    of tensors using multi-way projections. IEEE Transactions on Signal Processing,
    63(3):780–793, 2015.
    [3] S. Mun and J. E. Fowler. Block compressed sensing of images using directional transforms.
    Proc. IEEE Int. Conf. Image Processing, pages 3021–3024, 2009.
    [4] T-H. Chien, W.-J. Liang, and C.-S. Lu. A practical subspace multiple measurement
    vectors algorithm for cooperative spectrum sensing. In IEEE GLOBECOM, pages
    787–792, 2014.
    [5] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
    52(4):1289–1306, April 2006.
    [6] R. G. Baraniuk. Compressive sensing [lecture notes]. IEEE Signal Processing Magazine,
    24(4):118–121, July 2007.
    [7] E. J. Candes and M. B. Wakin. An introduction to compressive sampling. IEEE Signal
    Processing Magazine, 25(2):21–30, March 2008.
    [8] Y. Eldar M. Davenport, M. Duarte and G. Kutyniok. Introduction to Compressed Sensing.
    Chapter in Compressed Sensing: Theory and Applications, Cambridge University
    Press, 2012.
    [9] Richard Baraniuk, Mark Davenport, Ronald DeVore, and Michael Wakin. A simple
    proof of the restricted isometry property for random matrices. Constructive Approximation,
    28(3):253–263, 2008.
    [10] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal
    reconstruction from highly incomplete frequency information. IEEE Transactions on
    Information Theory, 52(2):489–509, Feb 2006.
    [11] J. A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE Transactions
    on Information Theory, 50(10):2231–2242, Oct 2004.
    [12] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition
    by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, 1998.
    [13] David L. Donoho and Michael Elad. Maximal sparsity representation via l1 minimization.
    2003.
    [14] Stephen Becker, Jérôme Bobin, and Emmanuel J. Candès. Nesta: A fast and accurate
    first-order method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39,
    2011.
    [15] Ewout van den Berg and Michael P. Friedlander. Probing the pareto frontier for basis
    pursuit solutions. SIAM Journal on Scientific Computing, 31(2):890–912, 2009.
    [16] Ming Gu, Lek-Heng Lim, and Cinna Julie Wu. Parnes: a rapidly convergent algorithm
    for accurate recovery of sparse and approximately sparse signals. Numerical
    Algorithms, 64(2):321–347, 2013.
    [17] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse
    reconstruction: Application to compressed sensing and other inverse problems. IEEE
    Journal of Selected Topics in Signal Processing, 1(4):586–597, Dec 2007.
    [18] Elaine T. Hale, Wotao Yin, and Yin Zhang. Fixed-point continuation for ℓ1-
    minimization: Methodology and convergence. SIAM Journal on Optimization,
    19(3):1107–1130, 2008.
    [19] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable
    approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, July
    2009.
    [20] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal
    matching pursuit. IEEE Trans. Inf. Theor., 53(12):4655–4666, December
    2007.
    [21] D. Needell and J.A. Tropp. Cosamp: Iterative signal recovery from incomplete and
    inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301 – 321,
    2009.
    [22] D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck. Sparse solution of underdetermined
    systems of linear equations by stagewise orthogonal matching pursuit. IEEE
    Transactions on Information Theory, 58(2):1094–1121, Feb 2012.
    [23] T. Blumensath and M. E. Davies. Gradient pursuits. IEEE Transactions on Signal
    Processing, 56(6):2370–2382, June 2008.
    [24] D. Needell and R. Vershynin. Signal recovery from incomplete and inaccurate measurements
    via regularized orthogonal matching pursuit. IEEE Journal of Selected Topics
    in Signal Processing, 4(2):310–316, April 2010.
    [25] W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction.
    IEEE Transactions on Information Theory, 55(5):2230–2249, May 2009.
    [26] Prateek Jain, Ambuj Tewari, and Inderjit S. Dhillon. Orthogonal matching pursuit
    with replacement. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
    Weinberger, editors, Advances in Neural Information Processing Systems 24, pages
    1215–1223. Curran Associates, Inc., 2011.
    [27] Y. C. Eldar, P. Kuppinger, and H. Bolcskei. Block-sparse signals: Uncertainty relations
    and efficient recovery. IEEE Transactions on Signal Processing, 58(6):3042–3054,
    June 2010.
    [28] Y. C. Eldar and M. Mishali. Robust recovery of signals from a structured union of
    subspaces. IEEE Transactions on Information Theory, 55(11):5302–5316, Nov 2009.
    [29] M. F. Duarte and Y. C. Eldar. Structured compressed sensing: From theory to applications.
    IEEE Transactions on Signal Processing, 59(9):4053–4085, Sept 2011.
    [30] E. J. Candes and T. Tao. Near-optimal signal recovery from random projections: Universal
    encoding strategies? IEEE Transactions on Information Theory, 52(12):5406–
    5425, Dec 2006.
    [31] Shahar Mendelson, Alain Pajor, and Nicole Tomczak-Jaegermann. Uniform uncertainty
    principle for bernoulli and subgaussian ensembles. Constructive Approximation,
    28(3):277–289, 2008.
    [32] T. T. Do, L. Gan, N. H. Nguyen, and T. D. Tran. Fast and efficient compressive
    sensing using structurally random matrices. IEEE Transactions on Signal Processing,
    60(1):139–154, Jan 2012.
    [33] D. Baron, M. Wakin, M. Duarte, S. Sarvotham, and R. Baraniuk. Distributed compressed
    sensing. Preprint, 2005.
    [34] M. F. Duarte, M. B. Wakin, D. Baron, S. Sarvotham, and R. G. Baraniuk. Measurement
    bounds for sparse signal ensembles via graphical models. IEEE Trans. on Information
    Theory, 59(7):4280–4289, 2013.
    [35] Y. C. Eldar and H. Rauhut. Average case analysis of multichannel sparse recovery
    using convex relaxation. IEEE Trans. on Information Theory, 56(1):505–519, 2010.
    [36] P. Boufounos, G. Kutyniok, and H. Rauhut. Sparse recovery from combined fusion
    frame measurements. IEEE Trans. on Information Theory, 57(6):3864–3876, 2011.
    [37] S.-W. Hu, G.-X. Lin, S.-H. Hsieh, and C.-S. Lu. Phase transition of joint-sparse recovery
    from multiple measurements via convex optimization. In IEEE International Conference
    on Acoustics, Speech and Signal Processing, pages 3576–3580, April 2015.
    [38] J. Chen and X. Huo. Theoretical results on sparse representations of multiplemeasurement
    vectors. IEEE Trans. on Signal Processing, 54(12):4634–4643, 2006.
    [39] M. E. Davies and Y. C. Eldar. Rank awareness in joint sparse recovery. IEEE Trans.
    on Information Theory, 58(2):1135–1146, 2012.
    [40] Y. Jin and B. D. Rao. Support recovery of sparse signals in the presence of multiple
    measurement vectors. IEEE Trans. on Information Theory, 59(5):3139–3157, 2013.
    [41] J. F. Determe, J. Louveaux, L. Jacques, and F. Horlin. On the exact recovery condition
    of simultaneous orthogonal matching pursuit. IEEE Signal Processing Letters,
    23(1):164–168, 2016.
    [42] Q. Mo and Y. Shen. A remark on the restricted isometry property in orthogonal matching
    pursuit. IEEE Trans. on Information Theory, 58(6):3654–3656, 2012.
    [43] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp. Living on the edge:
    phase transitions in convex programs with random data. Information and Inference,
    3(3):224–294, 2014.
    [44] L. Gan. Block compressed sensing of natural images. In 15th Int. Conf. on Digital
    Signal Processing, pages 403–406. IEEE, 2007.
    [45] S. Mun and J. E. Fowler. Residual reconstruction for block-based compressed sensing
    of video. Proc. Data compression Conference(DCC), pages 183–192, 2011.
    [46] S. Mun and J. E. Fowler. Motion-compensated compressed-sensing reconstruction for
    dynamic mri. Proc. IEEE Int. Conf. Image Processing, pages 1006–1010, 2013.
    [47] N. H. Nguyen, T. T. Do, L. Gan, and T. D. Tran. Fast and efficient compressive
    sampling using structurally random matrices. IEEE Trans. on Signal Processing,
    60(1):139–154, Jan 2012.
    [48] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang. A fast algorithm for sparse reconstruction
    based on shrinkage, subspace optimization, and continuation. SIAM J. Sci. Comput.,
    32(4):1832–1857, 2010.
    [49] Z. Wen, W. Yin, H. Zhang, and D. Goldfarb. On the convergence of an active-set
    method for ℓ1 minimization. Optimization Methods and Software, 27(6):1127–1146,
    2012.
    [50] A. Milzarek and M. Ulbrich. A Semismooth Newton method with multidimensional
    filter globalization for l1-optimization. SIAM Journal on Optimization, 24:298–333,
    2014.
    [51] C.-S. Lu and W.-J. Liang. Fast compressive sensing of high-dimensional signals with
    tree-structure sparsity pattern. IEEE ChinaSIP, pages 738–742, July 2014.
    [52] N. Sidiropoulos and A. Kyrillidis. Multi-way compressed sensing for sparse low-rank
    tensors. IEEE Signal Processing Letters, 19(11):757–760, 2012.
    [53] Q. Li, D. Schonfeld, and S. Friedland. Generalized tensor compressive sensing. IEEE
    ICME, pages 1–6, 2013.
    [54] A. Averbuch, S. Dekel, and S. Deutsch. Adaptive compressed image sensing using
    dictionaries. SIAM Journal on Imaging Sciences, 5(1):57–89, 2012.
    [55] L. He and L. Carin. Exploiting structure in wavelet-based bayesian compressed sensing.
    IEEE Transactions on Signal Processing, 57(9):3488–3497, 2009.
    [56] L. He, H. Chen, and L. Carin. Tree-structured compressive sensing with variational
    bayesian analysis. IEEE Signal Processing Letters, 17(3):233–236, 2010.
    [57] R. Baraniuk, V. Cevher, and M. B. Wakin. Low-dimensional models for dimensionality
    reduction and signal recovery: A geometric perspective. Proceedings of The IEEE,
    98(6):959–971, 2010.
    [58] L. Yu, J. P. Barbot, G. Zheng, and H. Sun. Bayesian compressive sensing for cluster
    structured sparse signals. Signal Processing, 9(10):1661–1666, 2000.
    [59] R. Baraniuk, V. Cevher, M. F. Duarte, and C. Hedge. Model-based compressive sensing.
    IEEE Trans. on Information Theory, 56(4):1982–2001, 2010.
    [60] T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing.
    preprint, 2008.
    [61] Luca Baldassarre, Nirav Bhan, Volkan Cevher, Anastasios Kyrillidis, and Siddhartha
    Satpathi. -sparse model selection: Hardness and relaxations. arXiv:1303.3207, 2013.
    [62] Coralia Cartis and Andrew Thompson. An exact tree projection algorithm for wavelets.
    arXiv preprint arXiv:1304.4570, 2013.
    [63] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with structured sparsity.
    Journal of Machine Learning Research, 12(Nov):3371–3412, 2011.
    [64] Philip Schniter. Turbo reconstruction of structured sparse signals. In Information
    Sciences and Systems (CISS), 2010 44th Annual Conference on, pages 1–6. IEEE,
    2010.
    [65] Giulio Coluccia, Diego Valsesia, and Enrico Magli. Smoothness-constrained image
    recovery from block-based random projections. In Multimedia Signal Processing
    (MMSP), 2013 IEEE 15th International Workshop on, pages 129–134. IEEE, 2013.
    [66] M. Duarte and R. Baraniuk. Kronecker compressive sensing. IEEE Trans. on Image
    Processing, 21(2):494–504, 2012.
    [67] J. Yang and Y. Zhang. Alternating direction algorithms for ℓ1-problems in compressive
    sensing. SIAM Journal on Scientific Computing, 33(1):250–278, 2011.
    [68] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
    inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.
    [69] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Programming,
    95(1):3–51, Jan. 2003.
    [70] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
    Cambridge, 2004.
    [71] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–
    95, Mar. 1996.
    [72] Anastasios Kyrillidis and Volkan Cevher. Recipes on hard thresholding methods. In
    4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive
    Processing (CAMSAP), number EPFL-CONF-183059, 2011.
    [73] Jeffrey D Blanchard, Jared Tanner, and Ke Wei. Conjugate gradient iterative hard
    thresholding: Observed noise stability for compressed sensing. IEEE Transactions on
    Signal Processing, 63(2):528–537, 2015.
    [74] E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted l1
    minimization. J. Fourier Anal. Appl., 14(5-6):877–905, 2008.
    [75] I. Selesnick, S. Cai, K. Li, L. Sendur, and A. F. Abdelnour. Wavelet software package.
    http://taco.poly.edu/WaveletSoftware.
    [76] Z. Wang and A. C. Bovik. Mean squared error: Love it or leave it? a new look at
    signal fidelity measures. IEEE Signal Processing Magazine, 26(1):98–117, Jan. 2009.
    [77] P. Paysarvi-Hoseini and N. C. Beaulieu. Optimal wideband spectrum sensing framework
    for cognitive radio systems. IEEE Trans. on Signal Processing, 59(3):1170–
    1182, 2011.
    [78] F. Zeng, C. Li, and Z. Tian. Distributed compressive spectrum sensing in cooperative
    multihop cognitive networks. IEEE Journal of Selected Topics in Signal Processing,
    5(1):37–48, Feb 2011.
    [79] G. Tzagkarakis and P. Tsakalides. Distributed compressed sensing of non-negative
    signals using symmetric alpha-stable distributions. In 2010 18th European Signal
    Processing Conference, pages 422–426, Aug 2010.
    [80] K. H. Jin, D. Lee, and J. C. Ye. A general framework for compressed sensing and
    parallel mri using annihilating filter based low-rank hankel matrix. IEEE Transactions
    on Computational Imaging, 2(4):480–495, Dec 2016.
    [81] D. D. Ariananda, G. Leus, and Z. Tian. Multi-coset sampling for power spectrum blind
    sensing. In 2011 17th International Conference on Digital Signal Processing (DSP),
    pages 1–8, July 2011.
    [82] L. W. Kang and C. S. Lu. Distributed compressive video sensing. In 2009 IEEE
    International Conference on Acoustics, Speech and Signal Processing, pages 1169–
    1172, April 2009.
    [83] E. J. Candes and T. Tao. Decoding by linear programming. IEEE Trans. on Information
    Theory, 51(12):4203–4215, 2005.
    [84] J. Wang and B. Shim. On the recovery limit of sparse signals using orthogonal matching
    pursuit. IEEE Trans. on Signal Processing, 60(9):4973–4976, 2012.
    [85] E. J. Candes. The restricted isometry property and its implications for compressed
    sensing. Comptes Rendus Mathematique, 346(9):589 – 592, 2008.
    [86] S. Kwon, J. Wang, and B. Shim. Multipath matching pursuit. IEEE Trans. on Information
    Theory, 60(5):2986–3001, 2014.
    [87] J. Mitola III and Jr. G. Q. Maguire. Cognitive radio: Making software radios more
    personal. Personal Communications, IEEE, 6(4):13–18, 1999.
    [88] Federal Communication Commission. Spectrum policy task force report. 02:135,
    2002.
    [89] J. Meng, W. Yin, H. Li, E. Hossain, and Z. Han. Collaborative spectrum sensing from
    sparse observations in cognitive radio networks. Selected Areas in Communications,
    IEEE Journal on, 29(2):327–337, 2011.
    [90] F.-Z. Zeng, Chen Li, and Zhi Tian. Distributed compressive spectrum sensing in cooperative
    multihop cognitive networks. Selected Topics in Signal Processing, IEEE
    Journal of, 5(1):37–48, 2011.
    [91] T. Wimalajeewa and P. K. Varshney. Cooperative sparsity pattern recovery in distributed
    networks via distributed-omp. In Acoustics, Speech and Signal Processing.
    IEEE International Conference on, 2013.
    [92] D. Baron, M. F. Duarte, M. B. Wakin, S.Sarvotham, and R. G. Baraniuk. Distributed
    compressive sensing. Technical report, Rice University, Houston, 2005.
    [93] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado. Sparse solutions to linear
    inverse problems with multiple measurement vectors. Signal Processing, IEEE
    Transactions on, 53(7):2477–2488, 2005.
    [94] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultaneous sparse
    approximation: Part i: Greedy pursuit. Signal Process., 86(3):572–588, 2006.
    [95] J. D. Blanchard, M. Cermak, D. Hanle, and Y. Jing. Greedy algorithms for joint sparse
    recovery. Signal Processing, IEEE Transactions on, 62(7):1694–1704, 2014.
    [96] K. M. Thilina, K. W. Choi, N. Saquib, and E. Hossain. Machine learning techniques
    for cooperative spectrum sensing in cognitive radio networks. Selected Areas in Communications,
    IEEE Journal on, 31(11):2209–2221, November 2013.
    [97] F. F. Digham, M.-S. Alouini, and M. K. Simon. On the energy detection of unknown
    signals over fading channels. Communications, IEEE Transactions on, 55(1):21–24,
    Jan 2007.
    [98] A. Ebrahimzadeh, M. Najimi, S. H. Andargoli, and A. Fallahi. Sensor selection and
    optimal energy detection threshold for efficient cooperative spectrum sensing. Vehicular
    Technology, IEEE Transactions on, PP(99):1–1, 2014.
    [99] J. Ma, G. Y. Li, and B.-H. Juang. Signal processing in cognitive radio. Proceedings
    of the IEEE, 97(5):805–823, May 2009.
    [100] J. Lund￿n, V. Koivunen, A. Huttunen, and H.V. Poor. Collaborative cyclostationary
    spectrum sensing for cognitive radio systems. Signal Processing, IEEE Transactions
    on, 57(11):4182–4195, Nov 2009.
    [101] H. Sun, A. Nallanathan, C.-X. Wang, and Y.-F. Chen. Wideband spectrum sensing for
    cognitive radio networks: a survey. Wireless Communications, IEEE, 20(2):74–81,
    April 2013.
    [102] Z. Quan, S.-G. Cui, A. H. Sayed, and H. V. Poor. Optimal multiband joint detection for
    spectrum sensing in cognitive radio networks. Signal Processing, IEEE Transactions
    on, 57(3):1128–1140, March 2009.
    [103] Z. Tian and G. B. Giannakis. A wavelet approach to wideband spectrum sensing for
    cognitive radios. In Cognitive Radio Oriented Wireless Networks and Communications,
    2006. 1st International Conference on, pages 1–5, June 2006.
    [104] B. Farhang-Boroujeny. Filter bank spectrum sensing for cognitive radios. Signal
    Processing, IEEE Transactions on, 56(5):1801–1811, May 2008.
    [105] Z.-H. Zhang, Z. Han, H.-S. Li, D. Yang, and C.-X. Pei. Belief propagation based cooperative
    compressed spectrum sensing in wideband cognitive radio networks. Wireless
    Communications, IEEE Transactions on, 10(9):3020–3031, September 2011.
    [106] Z. Tian and G. B. Giannakis. Compressed sensing for wideband cognitive radios. In
    2007 IEEE International Conference on Acoustics, Speech and Signal Processing -
    ICASSP ’07, volume 4, pages IV–1357–IV–1360, April 2007.
    [107] Z. Tian, Y. Tafesse, and B. M. Sadler. Cyclic feature detection with sub-nyquist sampling for wideband spectrum sensing. IEEE Journal of Selected Topics in Signal Processing, 6(1):58–69, Feb 2012.
    [108] H. Sun, W. Y. Chiu, and A. Nallanathan. Adaptive compressive spectrum sensing for wideband cognitive radios. IEEE Communications Letters, 16(11):1812–1815, November 2012.
    [109] Z. Qin, Y. Gao, and C. G. Parini. Data-assisted low complexity compressive spectrum sensing on real-time signals under sub-nyquist rate. IEEE Transactions on Wireless Communications, 15(2):1174–1185, Feb 2016.
    [110] Z. Qin, Y. Gao, M. D. Plumbley, and C. G. Parini. Wideband spectrum sensing on realtime signals at sub-nyquist sampling rates in single and cooperative multiple nodes. IEEE Transactions on Signal Processing, 64(12):3106–3117, June 2016.
    [111] M. Farrag, O. Muta, M. El-Khamy, H. Furukawa, and M. El-Sharkawy. Wide-band cooperative compressive spectrum sensing for cognitive radio systems using distributed sensing matrix. In 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall),
    pages 1–6, Sept 2014.
    [112] J. Zhao, X. Wang, and Q. Liu. Cooperative sequential compressed spectrum sensing over wide spectrum band. In 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), pages 1–9, June 2015.
    [113] Y. Ma, Y. Gao, Y. C. Liang, and S. Cui. Reliable and efficient sub-nyquist wideband spectrum sensing in cooperative cognitive radio networks. IEEE Journal on Selected Areas in Communications, 34(10):2750–2762, Oct 2016.
    [114] Y. Ma, Y. Gao, Y. C. Liang, and S. Cui. Efficient blind cooperative wideband spectrum sensing based on joint sparsity. In 2016 IEEE Global Communications Conference (GLOBECOM), pages 1–6, Dec 2016.
    [115] T. T. Cai and L. Wang. Orthogonal matching pursuit for sparse signal recovery with noise. Information Theory, IEEE Transactions on, 57(7):4680–4688, 2011.
    [116] T. T. Cai, G.-W. Xu, and J. Zhang. On recovery of sparse signals via l1 minimization. Information Theory, IEEE Transactions on, 55(7):3388–3397, 2009.
    [117] T. S. Rappaport. Wireless Communications: Principles and Practice. 2nd edition, Prentice Hall, 2002.
    [118] Piyush Gupta and Panganamala R Kumar. Critical power for asymptotic connectivity in wireless networks. In Stochastic analysis, control, optimization and applications, pages 547–566. Springer, 1999.
    [119] H. Ochiai, P. Mitran, H. V. Poor, and V. Tarokh. Collaborative beamforming for distributed wireless ad hoc sensor networks. IEEE Transactions on Signal Processing, 53(11):4110–4124, Nov 2005.
    [120] S. Mukherjee, D. Avidor, and K. Hartman. Connectivity, power, and energy in a multihop cellular-packet system. IEEE Transactions on Vehicular Technology, 56(2):818–836, March 2007.
    [121] L. Dong, A. P. Petropulu, and H. V. Poor. A cross-layer approach to collaborative beamforming for wireless ad hoc networks. IEEE Transactions on Signal Processing, 56(7):2981–2993, July 2008.
    [122] Xiaohua Lian, Homayoun Nikookar, and Leo P Ligthart. Distributed beam forming with phase-only control for green cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2012(1):65, 2012.
    [123] J. M. Kim, O. K. Lee, and J. C. Ye. Improving noise robustness in subspace-based joint sparse recovery. Signal Processing, IEEE Transactions on, 60(11):5799–5809, Nov 2012.
    [124] S.-W. Hu, G.-X. Lin, S.-H. Hsieh, W.-J. Liang, and C.-S. Lu. Phase transition of joint-sparse recovery from multiple measurements with prior information via convex optimization. In IEEE ICASSP, 2016.
    [125] T. T. Cai. On block thresholding in wavelet regression: Adaptivity, block size and threshold level. Statist. Sinica, 12:1241–1273, 2002. 89

    無法下載圖示 校內:2018-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE