| 研究生: |
陳永翰 Chen, Yung-Han |
|---|---|
| 論文名稱: |
以AC電滲流驅動流體觀點分析平行板收集器於不同收集窗口形狀下影響效率之多因子最適組合設計 The best combination design of multi-factors for efficiency on the parallel plate collector with various window shapes through the AC electroosmotic driving fluid concept |
| 指導教授: |
陳榮盛
Chen, Rong-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 平行板電極收集器 、AC電滲流 、流體最高流速 |
| 外文關鍵詞: | parallel plate electrodes of particle collector, AC electro-osmotic flow, maximum value of flow velocity |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於微流體晶片,有操作容易、攜帶便利、低製造成本、操作步驟簡化與微量檢測,是台灣近年來主要發展的產業。本文研究平行板電極粒子收集器,以不改變實驗流體為考量,選取幾何尺寸與物理性質參數,進行單一因子分析,以提升流體的最高流速,並作為提升收集效率的依據。
本文使用COMSOL Multiphysics 3.5 有限元素分析軟體,分析平行板電極收集器單一收集窗口在外加交流電場作用下,AC電滲流驅動流體流動的流速分佈情形,並改變收集窗口的幾何形狀,分析在窗口角落所發生的向心加速度。
在三種收集窗口的穩態分析中,可得到流體的最高流速大小順序為圓形窗口<正五邊形窗口<正方形窗口。以單一因子分析可知,提升流體最高流速,可增加收集窗口尺寸縮放率、外加交流電壓、外加交流頻率與流體導電度,及減少光阻層之相對介電常數與流體平均離子濃度。且正方形窗口在因子變動時,流體最高流速變化最顯著,而圓形窗口則最為穩定。最後,選取單一因子分析對流體流速提升之最適因子組合,進行多因子分析,得到流體最高流速之值為9.45μm,所提升之流體最高流速約為原設定的2.23倍
With the micro-fluid chip of easy in operation, portable convenience, low manufacture cost, steps to simplify and micro-volume detection is the major development of industries in Taiwan in recent year. This study researches for parallel plate electrodes of particle collector. In consideration, not to change experimental fluid selects geometric size and physical character parameters as one-factor-at-a-time analysis to enhance the maximum value of fluid flow, and improve collection efficiency as a basis.
This study uses Finite Element Analysis software COMSOL Multiphysics 3.5 to analysis fluid flow velocity distribution of driven by AC electro-osmotic flow in parallel plate electrode collector single collect window under external AC electric field. And to change the geometry shape of collect window analyzes centripetal acceleration at the corner of the window.
In steady-state analysis of three collect window can obtain the result of maximum value of flow velocity, the circle window is smaller than the pentagon window and the pentagon window is smaller than the square window. Under one-factor-at-a-time analysis, to enhance the maximum value of flow velocity can increase the rate of window size change, the external AC voltage, the external AC frequency, fluid conductivity, and can reduce the relative dielectric of photo-resist layer also average ion concentration of fluid. The square window under the factor change has the most significant change of maximum flow velocity. The circle window is the most stable. Finally, to select the best combination for improving flow velocity of one-factor-at-a-time analysis into multi-factor analysis obtains the maximum value of flow fluid is 9.45μm and about 2.23 times than original set.
[1]E.B. Cummings, A.K. Singh (2003), “Dielectrophoresis in Microchips Containing Arrays of Insulating: Theoretical and Experimental Results” Anal. Chem. , 75 pp.4724~4731.
[2]P.K. Wong, C.Y. Chen, T.H. Wang, C.M. Ho (2004), “Electriokinetic Bioprocessor for Concentrating Cells and Molecules” Anal. Chem., 76, 6908.
[3]K.H. Bhatt, S. Grego, O.D. Velev (2005), “An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes” Langmuir, 21, 6603.
[4]J. P. Urbanski, J. A. Levitan, D. N. Burch, T. Thorsen, M. Z. Bazant (2007), “The effectof step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps” J. Colloid Interface Sci , 309 pp.332~341.
[5]J. A. Levitan, S. Devasenathipathy, V. Studer, Y. Ben, T. Thorsen, T. M. Squires, M.Z. Bazant (2005), “Experimental observation of induced-charge electro-osmosis around a metal wire in a microchannel” Colloids Surf., A 267 pp.122~132.
[6]A. Heeren, C.P. Luo, W. Henschel, M. Fleischer, D.P. Kern (2007), “Manipulation of micro- and nano-particles by electro-osmosis and dielectrophoresis” Microelectron. Eng., 84 pp.1706~1709.
[7]A. Heeren, M. Fleischer, D. Kern (2008), “Determination of particle distributions in microfluidic systems under the influence of electric fields” Microelectron. Eng., 85, pp.1294~1297.
[8]P. Tathireddy, Y. H. Choi, M. Skliar (2008), “Particle AC electrokinetics in planar interdigitated microelectrode geometry” J. Electrostat., 66 pp.609~619.
[9]J. H. Masliyah, S. Bhattacharjee (2006), Electrokinetic and Colloid Transport Phenomena, Wily-Interscience.
[10]H. Morgan, N. G. Green (2002), AC Electrokinetics: Colloids and Nanoparticles, United Kingdom: Research Studies Press Ltd.
[11]T. Muller, A. Gerardino, Th. Schnelle, S.G. Shirley, F. Bordoni, G. De Gasperis, R. Leoni, G. Fuhr (1996), “Trapping of Micrometre and Sub-micrometre Particles by High-frequency Electric Fields and Hydrodynamic Forces” Phys.D:Appl.Phys., 29 pp.340~349.
[12]S-R. Yeh, M. Seul, B.I. Shraiman (1997), “Assembly of ordered colloidalaggregates by electric-field-induced fluid flow.” Nature, 386 pp.57~59.
[13]M. Trau, D.A. Saville, I.A. Aksay (1997), “Assembly of colloidal crystals at electrode interface.” Langmuir , 13 pp.6375~6381.
[14]A. Ramos, H. Morgan, N.G. Green, A. Castellanos (1998), “AC Electrokinetics: A review of forces in microelectrode structure.” J.Phy.D:Appl.Phys. , 31 pp. 2338~235 .
[15]D.E. Yate, S. Levine, T.W. Healy (1974), “Site-Binding Model of The Electrical Double Layer at The Oxide/Water Interface” J. Chem. Soc. Faraday Trans. I, 70 pp.1807~1818.
[16]施佑宗(2009),「電極大小/形狀對於電滲收集晶片之效率探討」,大同大學機械工程研究所碩士論文
[17]許哲維(2007),「電滲力應用於細胞/粒子收集效率之探討」,大同大學機械工程研究所碩士論文
[18]邱亦絜(2005),「電滲泵內多孔界質為流場特性之數值模擬」,國立中央大學機械工程研究所碩士論文
[19]翁啟能(2008),「交流電滲透在微管道之研究:傳輸與混合」”國立成功大學工程科學研究所碩士論文
[20]林彥亨(2002),「利用介電泳力操控細胞之生物晶片研究」,” 國立成功大學工程科學研究所碩士論文
[21]蔡聖善、朱耘編著(1998),古典電動力學,凡異出版社
校內:2016-07-26公開