簡易檢索 / 詳目顯示

研究生: 高健智
Kao, Chien-Chih
論文名稱: 應用奈米球微影術於奈米圖形化藍寶石基板之發光二極體
Nano-Patterned Sapphire Substrate LEDs Fabricated By Nanosphere Lithography
指導教授: 蘇炎坤
Su, Yan-Kuin
黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 62
中文關鍵詞: 奈米球微影術圖形化藍寶石基板發光二極體
外文關鍵詞: nanosphere lithography, patterned sapphire substrate, light emitting diode
相關次數: 點閱:80下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • GaN材料本身在藍光及紫外光發光元件上有很大的發展空間。但由於氮化鎵晶體與成長基板的晶格常數不匹配,以及外部量子效率的不佳,使得GaN材料發展受到限制。雖然利用低溫成長的氮化鎵或氮化鋁緩衝層可以改善氮化鎵磊晶層的結晶品質,但還是有109-1010 cm-2 的穿透差排密度存在於磊晶層裡。本文成功地利用奈米球微影術(Nanosphere lithography)製作出奈米圖形化藍寶石基板,並將氮化鎵藍光發光二極體結構成長於奈米圖形化藍寶石基板上,深入地分析此具有奈米圖形化藍寶石基板的藍光發光二極體 ( Light Emitting Diode Grown on Nano-Patterned Sapphire Substrate, Nano-PSS-LED ) 與傳統平面基板和傳統微米等級之圖形化基板發光二極體之差異。
    在基板製備方面,使用旋轉塗佈法將直徑500奈米的奈米球均勻塗佈在藍寶石基板上,接著利用電感耦合式電漿蝕刻製程來製作奈米圖形化藍寶石基板,在不同的蝕刻條件下得到不同圖形化的藍寶石基板,並且以有機金屬化學氣相沉積法來成長有圖形化及傳統平面基板之藍光發光二極體。藉由改善磊晶品質與奈米圖形化基板所散射的光,可使藍光發光二極體的輸出功率較傳統平面基板和傳統微米等級之圖形化基板來得高。以奈米圖型化基板所成長的發光二極體與傳統平面基板的發光二極體相較之下,光輸出功率依序有著18%~26%之提升,而利用奈米球微影術製備奈米圖案化藍寶石基板,不但符合可大量生產的條件外,也減少了製程所需之成本與時間,同時也有效地提升了發光二極體之光萃取率,使得發光二極體有更好的光電特性表現。

    GaN material have the very big development space on the part in the blue and the ultraviolet LEDs. But because the lattice constant mismatch between GaN and sapphire substrates, and external quantum efficiency is not good. Causes the GaN material development to be restricted. Although the introduction of low temperature GaN or AlN buffer layer can significantly improve the crystal quality of the GaN epitaxial layer. The threading dislocation density has been reported to be of the order of 109-1010 cm-2 in the GaN epitaxial layer. This article successfully uses nanosphere lithography to manufacture nano-patterned sapphire substrates. And grows the GaN blue LED structure on nano-PSS. Analyse the difference between GaN epilayers grown on the nano-PSS, micro-PSS and flat sapphire.
    In substrates preparation, using spin coater to coating nanosphere on the sapphire substrate and the nanosphere size is 500nm in diameter. Then, using inductively coupled plasma etched the sapphire substrate. The growth of PSS and flat sapphire blue LEDs were carried out using a MOCVD system. The increase in the output power of nano-PSS was achieved by improving the crystal quality and scattering emission light from the nano-pattern than micro-PSS and flat sphhhire. Compared with nano-PSS LED and conventional LED. There is a 18%~26% improvement in light output power. Manufactures nano-PSS using nanosphere lithography not only suits the commercialize production, but also reduced cost and time in the process.

    CONTENTS ABSTRACT IN CHINESE I ABSTRACT III ACKNOWLEDGMENTS V CONTENTS VI TABLE CAPTIONS VIII FIGURE CAPTIONS IX CHAPTER 1 INTRODUCTION 1 1-1 THE INTRODUCTION OF GAN-BASED LIGHT-EMITTING DIODES 1 1-2 MOTIVATION 2 CHAPTER 2 PRINCIPLE AND BACKGROUND 5 2-1 NANOSPHERE LITHOGRAPHY (NSL) 5 2-2 THE BACKGROUND OF PSS TECHNOLOGY 8 CHAPTER 3 EXPERIMENT DETAIL 11 3-1 SPIN COATING METHOD 11 3-2 NANOSPHERE LAYERS ON BLUE LEDS 16 3-3 INDUCTIVELY COUPLED PLASMA REACTIVE ION ETCHING 19 3-4 ICP ETCHING THE SAPPHIRE SUBSTRATE 20 CHAPTER 4 PROCESS TO FABRICATION THE BLUE LED 33 4-1 GAN EPILAYER GROWN BY MOCVD 33 4-2 NANO-PSS LEDS 34 CHAPTER 5 RESULTS AND DISCUSSION 37 5-1 NANOSPHERE ON BLUE LEDS 37 5-2 NANO-PSS LEDS 37 5-2-1 QUALITY OF GAN LED 41 5-2-2 ELECTRICAL PROPERTIES 41 5-2-3 OPTICAL PROPERTIES 45 CHAPTER 6 CONCLUSION AND FUTURE WORK 55 6-1 CONCLUSION 55 6-2 FUTURE WORK 56 REFERENCES 57

    [1] Shuji Nakamura, “GaN growth using GaN buffer layer”, Jpn. J. Appl.Phys. 30, 1705 (1991)
    [2] Tetsu Kachi, Kazuyoshi Tomita, Kenji Itoh, and Hiroshi Tadano, “A new bufferlayer for high quality GaN growth by metalorganic vapor phase epitaxy”, Appl. Phys. Lett. 72, 704 (1998)
    [3] Isao Kidoguchi, Akihiko Ishibashi, Gaku Sugahara, and Yuzaburoh Ban,“Air-bridged lateral epitaxial overgrowth of GaN thin films”, Appl. Phys. Lett. 76, 3768 (2000)
    [4] S. Haffouz, A. Grzegorczyk, P. R. Hageman, P. Vennéguës, E. W. J. M. van der Drift, and P. K. Larsen, “Structural properties of maskless epitaxial lateral overgrown MOCVD GaN layers on Si (111) substrates”, J. Crystal Growth 248, 568 (2003)
    [5] Ig-Hyeon Kim, C. Sone, Ok-Hyun Nam, Yong-Jo Park, and Taeil Kim, “Crystal tilting in GaN grown by pendoepitaxy method on sapphire substrate”, Appl. Phys. Lett. 75, 4109 (1999)
    [6] Young-Bae Lee, Tao Wang, Yu-Huai Liu, Jin-Ping Ao, Yuji Izumi, Yves Lacroix, Hong-Dong Li, Jie Bai, Yoshiki Naoi, and Shiro Sakai, “High-Performance 348 nm AlGaN/GaN-Based Ultraviolet-Light-Emitting Diode with a SiN Buffer Layer”, Jpn. J. Appl. Phys. 41, 4450 (2002)
    [7] Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Hiroyuki Kiyoku, Yasunobu Sugimoto, Tokuya Kozaki, Hitoshi Umemoto, Masahiko Sano, and Kazuyuki Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate”, Appl. Phys. Lett. 72, 211 (1998)
    [8] I. Schnitzer, E. Yablonovitch, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes”, Appl. Phys. Lett. 63, 2174 (1993)
    [9] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I.Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A.Stockman, F. A. Kish, and M. G. Craford, “High-power truncated-inverted-pyramid(AlxGa1-x) 0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency”, Appl. Phys. Lett. 75, 2365 (1999)
    [10] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O'Shea, M. J.Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett. 78, 3379 (2001)
    [11] Shuo Han, Zhibiao Hao, Jian Wang, and Yi Luo, “Controllable two-dimensional photonic crystal patterns fabricated by nanosphere lithography”, J. Vac. Sci. Technol. 23, 1585 (2005)
    [12] P. B. Fischer and S. Y. Chou, “High resolution electron beam lithography and high accuracy overlay using a modified SEM”, Microelectronic Engineering, v 21, p 141-144, (1993)
    [13] Chang .A.S.P, Wu. W, and, Chou. S. Y “A new two-dimensional Subwavelength Resonant Grating filter fabricated by Nanoimprint Lithography”, Lasers and Electro-Optics Society Annual Meeting-LEOS, v 2, p 584-585, (2001),
    [14] F. Romanato, L. Businaro, L. Vaccari, S. Cabrini, P. Candeloro, M. De Vittorio , A. Passaseo , M.T. Todaro , R. Cingolani , E. Cattaruzza ,M. Galli , C. Andreani , E. Di Fabrizio, “F abrication of 3D metallic photonic crystals by X-raylithography”, Microelectronic Engineering 67–68, 479–486 (2003)
    [15] Shuo Han, Zhibiao Hao, Jian Wang, and Yi Luo, “Controllable two-dimensional photonic crystal patterns fabricated by nanosphere lithography”, J. Vac. Sci. Technol. B 23, 1585-1588 (2005)
    [16] Ferenc Ja’rai-Szabo’, Simion As_tilean, Zolta’n Ne’da, “Understanding self-assembled nanosphere patterns”, Chemical Physics Letters 408, 241–246 (2005)
    [17] David J. Norris, Erin G, Arling, Linli Meng, Ruth Heiny and L. E. Scriven “Opaline Photonic Crystal: How does self-assembly work”, Adv. Mater. No.16, 16(2004)
    [18] Seung-Man Yang, Se Gyu Jang, Dae-Geun Choi, Sarah Kim, and HyungKyun Yu “Nanomachining by colloidal lithography”, Adv. Mater. No.16, 16(2004)
    [19] Ormonde A D, Hicks E C, Castillo J and Van Duyne, “ Nanosphere lithography: fabrication of large area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV–vis extinction spectroscopy”, Langmuir 20, 6927–31 (2004)
    [20] Nancy H. Finkel, Brian G. Prevo, Orlin D. Velev, and Lin He, “Ordered Silicon Nanocavity Arrays in Surface-Assisted Desorption/Ionization Mass Spectrometry”, Analytical Chemistry, v 77, p 1088-1095 (2005)
    [21] J. Rybczynski , U. Ebels , M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, v 219, p 1-6, (2003)
    [22] Yan Xu, Garrett J. Schneider, Eric D. Wetzel, and Dennis W. Prather, “Fabrication of self-assembled photonic-crystal structures by centrifugation and spin-coating”, proceedings of SPIE - The International Society for Optical Engineering, v 5183, (2003)
    [23] C L Cheung, R J Nikoli, C E Reinhardt and T FWang , “Fabrication of nanopillars by nanosphere lithography ”, Nanotechnology, v 17, p 1339-1343 (2006)
    [23] Kazuyuki Tadatomo, Hiroaki Okagawa, Youichiro Ohuchi, Takashi Tsunekawa,Yoshiyuki Imada, Munehiro Kato and Tsunemasa Taguchi, “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. Vol. 40, pp. L 583–L 585 (2001)
    [24] Motokazu Yamada, Tomotsugu Mitani, Yukio Narukawa, Shuji Shioji, Isamu Niki, Shinya Sonobe, Kouichiro Deguchi, Masahiko Sano and Takashi Mukai, “InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode” Jpn. J. Appl. Phys. Vol. 41, pp. L 1431–L 1433 (2002)
    [25] Y.J. Lee , T.C. Hsu, H.C. Kuo , S.C.Wang , Y.L. Yang , S.N. Yen , Y.T. Chub, Y.J. Shen ,M.H. Hsieh , M.J. Jou , B.J. Lee, “Improvement in light-output efficiency of near-ultraviolet InGaN–GaN LEDs fabricated on stripe patterned sapphire substrates”, Materials Science and Engineering B 122 , 184–187 (2005)
    [26] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, and C. F. Lin “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template”, Appl. Phys. Lett. 89, 161105 (2005)
    [27] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, , and S. C. Wang, “Enhancing the Output Power of GaN-Based LEDs Grown on Wet-Etched Patterned Sapphire Substrates” Materials Science and Engineering B 122 , 184–187 (2005)
    [28] Chia-En Lee, Yi-Jiun Lee, Hao-Chung Kuo,Meng-Ru Tsai, B. S. Cheng, Tien-Chang Lu, Shing-Chung Wang, and Chia-Tai Kuo “Enhancement of Flip-Chip Light-Emitting Diodes With Omni-Directional Reflector and Textured Micropillar Arrays” IEEE Photon. Technol. Lett., vol. 19, pp. 983–985 (2007)
    [30] Haiyong Gao, Fawang Yan, Yang Zhang, Jinmin Li, Yiping Zeng, and Guohong Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” J. Appl. Phys, vol. 103, pp. 014314 (2008)
    [31] Reiner Windisch, Barun Dutta, Maarten Kuijk, Alexander Knobloch, Stefan Meinlschmidt, Stefan Schoberth, Peter Kiesel, Gustaaf Borghs, Gottfried H. Döhler, and Paul Heremans “40% Efficient Thin-Film Surface-Textured Light-Emitting Diodes by Optimization of Natural Lithography”, IEEE Trans. Electron Devices, vol. 41, p. 1475, 1994.
    [32] John C. Hulteen and Richard P. Van Duyne “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces”, J. Vac. Sci. Technol. A, Vol. 13, No. 3 (1995)
    [33] Y.J. Sung, H.S. Kim, Y.H. Lee, J.W Lee, S.H. Chae, Y.J. Park, and G.Y. Yeom “High rate etching of sapphire wafer using Cl2/BCl3/Ar inductively coupled plasmas”, Materials Science and Engineering B82, 50–52 (2001)
    [34] Y.P. Hsu, S.J. Chang, Y.K. Su, J.K. Sheu, C.H. Kuo, C.S. Chang, and S.C. Shei “ICP etching of sapphire substrates”, Optical Materials 27, 1171–1174 (2005)
    [35] C.H. Jeong, D.W. Kim, H.Y. Lee, H.S. Kim, Y.J. Sung and G.Y. Yeom “Sapphire etching with BCl3/HBr/Ar plasma ”, Surface and Coatings Technology 171, 280–284 (2003

    下載圖示 校內:2009-06-30公開
    校外:2010-06-30公開
    QR CODE