| 研究生: |
張昌碩 Chang, Chang-Shuo |
|---|---|
| 論文名稱: |
雷射拋光與誘發織構技術應用於SKD61模具鋼表面粗糙度、微結構、機械性質、磨潤性質之影響 Effects of surface roughness, microstructure, mechanical and tribological properties with applying laser polishing and induced texture structure technology on SKD61 tool steel |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 共同指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 267 |
| 中文關鍵詞: | 雷射拋光 、空間頻率分析 、材料承壓比 、燒蝕門檻值 、雷射誘發週期性表面結構 、相變化 、接觸角 、三維碎形理論 、磨耗 |
| 外文關鍵詞: | laser polishing, spatial frequency analysis, material bearing ratio, ablation threshold, laser induced periodic surface structure, phase transformation, contact angle, 3D fractal theory, wear |
| 相關次數: | 點閱:195 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用雷射光具備高能量及高精準度之特性,克服傳統拋光在特殊狀態(高硬度及高強度工件、高撓性纖薄元件、複雜外形、高表面精整及尺寸精度等需求)下無法施工之限制。商用摻鐿單模(TEM00)光纖雷射,系統配備內部脈衝產生器和波長1070 nm雷射光,可進行連續波雷射精微拋光(Continuous-wave laser micro polishing, CWLμP)和脈衝雷射精微拋光(Pulsed laser micro polishing, PLμP),波長800 nm的商用P-SpitFire-120FS飛秒(fs)雷射系統則用於表面織構技術。
研究使用成本低廉、具有多種用途且在工業中易於取得之SKD61模具鋼進行實驗。CWLμP採用經熱處理試件,無熱處理試件則用於PLμP 和fs織構技術。PLμP及CWLμP之控制因子及劑量使用直交表進行三階段實驗設計法,對表面粗糙度(Sa)、磨耗率、及摩擦係數進行最小化控制。飛秒雷射誘發週期性表面結構(Laser induced periodic surface structure, LIPSS)織構技術方面首先進行單道次軌跡估算溝槽截面輪廓寬度(W)及深度(D),利用雷射功率範圍內近似於常數之D/W值、顯著晶體變化與鐵含量,可以獲得三個雷射功率的子區域與需求能量,並清楚識別固態-(電漿)燒蝕、以及燒蝕-蒸發伴隨電漿擊穿躍遷的範圍。
PLμP中,雷射劑量對於Sa及表面粗糙度紋路是主要控制因子;空間頻率分析中,波紋最高峰之頻率僅受雷射掃描速率及脈衝頻率影響;熔融層與熱影響區厚度很大程度上取決於雷射控制因子與劑量強度,這兩層的形成造成硬度及彈性模數均低於原材;摩擦係數則與表面形貌有關,且隨著表面粗糙度增加而上升。
CWLμP方面,雷射沉積能量對於Sa及表面粗糙度紋路是主要控制因子;儘管最大振幅空間頻率極度接近或甚至大於原材研磨軌跡頻率,然而過度的雷射功率、趨緩的掃描速率、或過大的重疊距離造成波紋頻率小於原材研磨軌跡頻率;增加沉積能量將提升熔融層與熱影響區厚度,進而影響硬度與彈性模數等機械性質。
飛秒雷射誘發週期性表面結構方面,空間頻率分析當雷射功率超過子區域門檻值時,增加雷射掃描覆蓋率能有效降低表面最高振幅;雷射功率(或雷射劑量)與掃描覆蓋率之複合效應對所有試件之接觸角(潤滑油環境中,觀察方向與雷射掃描方向垂直)、及接觸角對摩擦係數與磨耗體積的影響均得到合理的解釋。利用接觸角建立操作條件與磨潤參數之關聯性,可用來解釋雷射功率與掃描覆蓋率對潤滑油環境下摩擦係數與磨耗體積之最小化;表面輪廓之Sa、skewness、kurtosis是影響潤滑油環境中接觸角的主要因子,使接觸角成為控制因子影響摩擦係數與磨耗體積;3D碎形模型用來描述具異向性紋路織構表面,利用特徵(週期)長度在x方向(Lx)及y方向(Ly)之乘積(LxLy)與織構表面紋路有關定義為新參數,成功發展並替換傳統上使用skewness與kurtosis分析表面形貌方法,並進一步討論雷射劑量與接觸角的關係。
In the present study, laser beam with characteristics of high energy and high precision was applied to overcome the restrictions for conventional polishing. The particular conditions include high hardness and strength workpiece, flexible or slender specimen, complex shape, surface finish and dimensional accuracy requirements. Continuous wave laser micro polishing (CWLμP) and pulsed laser micro polishing (PLμP) were performed in a commercial ytterbium-dope single mode (TEM00) fiber system equipped with internal pulse generator and an emitted wavelength of 1070 nm. A commercial P-SpitFire-120FS femtosecond (fs) laser system with a wavelength of 800 nm was prepared for surface texturing.
Experiments were carried out using SKD61 tool steel because of its inexpensive cost, multiple usage and easy to acquire in industry. Specimens with heat treatment (H.T.) were adopted for CWLμP and without H.T. for PLμP and fs texturing. The operating conditions of laser controlling factors and fluence for the minimization of the Sa, wear rate and friction coefficient were determined through the planned arrangements of three stages including the experimental design method for the PLμP and CWLμP. As for the fs laser induced periodic surface structure (LIPSS) texturing, single-pass tracks are provided first to evaluate the width (W) and depth (D) of groove's lateral profile. With the characteristics exhibited in the nearly constant D/W data and the noticeable changes in the crystal species and the Fe content in this powers range, the three power subregions and the powers required for the solid-(plasma) ablation and the ablation-evaporation plus plasma breakdown transitions can be identified clearly.
In PLμP, the laser fluence is the dominant factor for Sa and the pattern of surface roughness. The frequency of the highest peak in relation to the ripples is only affected by laser beam scanning velocity and pulse frequency. The thicknesses of melt and heat affected zone strongly depend on the laser controlling factors and the fluence intensity. The formation of these two zones has the hardness and reduced modulus to values mostly lower than those of the as-received specimen. The friction coefficient is related to the morphology of the polished specimen and increases along with the mean surface roughness.
In CWLμP, the laser deposited energy (DE) is the dominant factor for Sa and the pattern of surface roughness. An excessively high laser power, an insufficiently high laser beam scanning velocity, or an excessively large hatch distance can create ripples with frequencies smaller than those of the grinding marks in the as-received specimen, although the highest amplitude is either close to or even greater than the grinding marks of the as-received specimen. Increasing the DE of CWLμP can generally increase the thicknesses of melt and heat affected zone, and also affected the mechanical properties of hardness and reduced modulus.
In fs LIPSS texturing, an increase in the overlap ratio can reduce the high amplitude of surface (HA) efficiently when the laser power beyond the subregion threshold. The combined effect of laser power (or peak fluence) and overlap ratio on the contact angle, (θperpendicular)oil, and the (θperpendicular)oil effect on friction coefficient and wear volume of specimen are linked to be valid for all the specimens. The contact angles used to establish the correlations between the operating conditions and the tribological parameters can provide us explanations for the choices in laser power and overlap ratio to minimize the friction coefficient and wear volume of specimen operating in oil lubrications. The mean surface roughness, skewness, and kurtosis of a surface profile are the dominant factors for contact angles formed in the oil lubricant. Contact angle becomes a controlling factor for the friction coefficient, and specimen wear volume. The 3D fractal model is powerfully used to describe the textured surfaces with any anisotropic pattern. The product of characteristic (periodic) lengths in x (Lx) and y direction (Ly), LxLy, is defined to be a new parameter relevant to the surface pattern of textured surface. It is successfully developed to replace skewness and kurtosis conventionally used in the analysis of surface morphology and further discusses with fluence and contact angle.
Amine, T., Newkirk, J. W., El-Din, H., El-Sheikh, F., Liou, F. Microstructural and hardness investigated of tool steel D2 processed by laser surface melting and alloying. Int. J. Adv. Manuf. Technol. 73, 1427–1435 (2014).
https://doi.org/10.1007/s00170-014-5882-8.
Annou, R. T. V. K., Tripathi, V. K. Femtosecond laser pulse induced Coulomb explosion. arXiv preprint physics/0510014 (2005).
arXiv:physics/0510014v1.
Askeland, D. R., Wright, W. J., 2014. The Science and Engineering of Materials, seventh ed., Cengage Learning, Boston.
Avilés, R., Albizuri, J., Lamikiz, A., Ukar, E., Avilés, A. Influence of laser polishing on the high cycle fatigue strength of medium carbon AISI 1045 steel. Int. J. Fatigue. 33(11), 1477–1489 (2011).
https://doi.org/10.1016/j.ijfatigue.2011.06.004.
Baldacchini, T, Carey, J. E., Zhou, M., Mazur, E. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir 22(11), 4917–4919 (2006).
https://doi.org/10.1021/la053374k.
Bandres, M. A., Gutierrez-Vega, J. C. Ince–Gaussian beams. Opt. Lett. 29(2), 144–146 (2004).
https://doi.org/10.1364/OL.29.000144.
Belaud V., Valette, S., Stremsdoerfer, G., Bigerelle, M., Benayoun, S. Wettability versus roughness: Multi-scales approach. Tribol. Int. 82, 343−349 (2015).
https://doi.org/10.1016/j.triboint.2014.07.002.
Bizi-Bandoki, P., Benayoun, S., Valette, S., Beaugiraud, B., Audouard, E. Modifications of roughness and wettability properties of metals induced by femtosecond laser treatment. Appl. Surf. Sci. 257(12), 5213–5218 (2011).
https://doi.org/10.1016/j.apsusc.2010.12.089.
Bonse, J., Kirner, S. V., Griepentrog, M., Spaltmann, D., Krüger, J. Femtosecond laser texturing of surfaces for tribological applications. Mater. 11(5), 801~1–19 (2018).
https://doi.org/10.3390/ma11050801.
Bonse J, Krüger J, Höhm, S., Rosenfeld, A. Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24(4), 042006–042029 (2012).
https://doi.org/10.2351/1.4712658.
Bonse, J., Höhm, S., Kirner, S. V., Rosenfeld, A., Krüger, J. Laser-induced periodic surface structures—A scientific evergreen, IEEE J. Sel. Top. Quantum Electron. 23, 9000615~1−15 (2017).
https://doi.org/10.1109/JSTQE.2016.2614183.
Bonse, J., Mann, G., Krüger, J., Marcinkowski, M., Eberstein, M. Femtosecond laser-induced removal of silicon nitride layers from doped and textured silicon wafers used in photovoltaics. Thin Solid Films 542, 420–425 (2013).
https://doi.org/10.1016/j.tsf.2013.07.005.
Bordatchev, E. V., Hafiz, A. M. K., Tutunea-Fatin, R.O. Performance of laser polishing in finishing of metallic surfaces, Int. J. Adv. Manuf. Technol., 73, 35–52 (2014).
https://doi.org/10.1007/s00170-014-5761-3.
Boreman, G. D. Modulation Transfer Function in Optical and Electro-Optical Systems, SPIE Press, Bellingham, WA (2001).
ISBN: 9780819441430.
Borghi, R., Santarsiero, M. M2 Factor of Bessel-Gauss beams. Opt. Lett. 22(5), 262–264 (1997).
https://doi.org/10.1364/OL.22.000262.
Borowiec, A., Haugen, H. K. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82(25), 4462–4464 (2003).
https://doi.org/10.1063/1.1586457.
Burzic, B., Hofele, M., Mürdter, S., Riegel, H. Laser polishing of ground aluminum surfaces with high energy continuous wave laser. J. Laser Appl. 29(1), 011701~1–8 (2017).
https://doi.org/10.2351/1.4966923.
Chakravarty, U., Ganeev, R. A., Naik, P. A., Chakera, J. A., Babu, M., Gupta, P. D. Nano-ripple formation on different band-gap semiconductor surfaces using femtosecond pulses. J. Appl. Phys. 109(8), 084347~1–8 (2011).
https://doi.org/10.1063/1.3580329.
Chang, C. S., Chung, C. K., Lin, J. F. Surface quality, microstructure, mechanical properties and tribological results of the SKD61 tool steel with prior heat treatment affected by the deposited energy of continuous wave laser micro-polishing. J. Mater. Process. Technol. 234, 177–194 (2016).
https://doi.org/10.1016/j.jmatprotec.2016.03.024.
Chang, C. S., Yang, K. S., Chung, C. K., Lin, J. F. Surface quality, microstructure, and mechanical properties of the SKD61 tool steel with prior heat treatment affected by single-and double-pass continuous wave laser polishing. Inter. J. Adv. Manuf. Technol. 92(5-8), 1643–1658 (2017).
https://doi.org/10.1007/s00170-017-0264-7.
Chichkov, B. N., Momma, C., Nolte, S., Von Alvensleben, F., Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63(2), 109–115 (1996).
https://doi.org/10.1007/BF01567637.
Clark, S. E., Emmony, D. C. Ultraviolet-laser-induced periodic surface structures. Phys. Rev. B 40(4), 2031–2041 (1989).
https://doi.org/10.1103/PhysRevB.40.2031.
CPC Base Oil, Chinese Petroleum Corporation, Taiwan.
https://ws.cpc.com.tw/Download.ashx?u=LzAwMS9VcGxvYWQvMS9yZWxmaWxlLzAvMzE5OS9kODIwNjcxZS01YTcyLTRiNmQtYjg1MC1mM2JiNGRhZDczOGEucGRm&n=TEIyMTAxOS1QTTEwMEsgMTUwSyDln7rnpI7msrkucGRm.
Crafer, R. C., Oakley, P. J. Laser Processing in Manufacturing (London: Springer–Science+Business Media Publishing) (2013).
ISBN: 978-94-010-4685-5.
Cui, J., Yang, L., Xie, H., Wang, Y., Mei, X., Wang, K., Wang, W., Hou, C. New optical near-field nanolithography with optical fiber probe laser irradiating atomic force microscopy probe tip. Integr. Ferroelectr. 169(1), 124–132 (2016).
https://doi.org/10.1080/10584587.2016.1165555.
Cui, J., Zhang, J., Barayavuga, T., Wang, X., He, X., Yang, L., Xie, H., Mei, X., Wang, W. Nanofabrication with the thermal AFM metallic tip irradiated by continuous laser. Integr. Ferroelectr. 179(1), 140–147 (2017).
https://doi.org/10.1080/10584587.2017.1331333.
DeCarlo, L. T. On the meaning and use of kurtosis. Psychol. methods, 2(3), 292–307 (1997).
https://doi.org/10.1037/1082-989X.2.3.292.
Donoso, M. G., Méndez-Vilas, A., Bruque, J. M., González-Martin, M. L. On the relationship between common amplitude surface roughness parameters and surface area: Implications for the study of cell–material interactions. Int. Biodeter. Biodegr. 59(3), 245–251 (2007).
https://doi.org/10.1016/j.ibiod.2006.09.011.
do Vale, J. L., da Silva, C. H., Pintaude, G. Energetic coefficient of friction applied to cylinder liners lab tests. Ind. Lubr. Tribol. 72(9), 1103–1108 (2019).
https://doi.org/10.1108/ILT-08-2019-0324.
Duffet, G., Sallamand, P., Vannes, A. B. Improvement in friction by CW Nd: YAG laser surface treatment on cast iron cylinder bore. Appl. Surf. Sci. 205, 289–296 (2003).
https://doi.org/10.1016/S0169-4332(02)01119-4.
Dusser, B., Sagan, Z., Soder, H., Faure, N., Colombier, J. P., Jourlin, M., Audouard, E. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt. express 18(3), 2913-2924 (2010).
https://doi.org/10.1364/OE.18.002913.
Dyukin, R. V., Martsinovskiy, G. A., Sergaeva, O. N., Shandybina, G. D., Svirina, V. V., Yakovlev, E. B. Interaction of femtosecond laser pulses with solids: electron/phonon/plasmon dynamics. Laser Pulses-Theory, Technology, and Applications 197–218 (2012).
http://dx.doi.org/10.5772/46237.
Eichstädt, J., Römer, G. R. B. E., Huis, A. J. Towards friction control using laser-induced periodic surface structures. Phys. Procedia 12, 7–15 (2011).
https://doi.org/10.1016/j.phpro.2011.03.099.
Emmony, D. C., Howson, R. P., Willis, L. J. Laser mirror damage in germanium at 10.6 μm. Appl. Phys. Lett. 23(11), 598–600 (1973).
https://doi.org/10.1063/1.1654761.
Exner, H., Regenfuss, P., Hartwig, L., Klötzer, S., Ebert, R. Selective laser micro sintering with a novel process. Fourth Int. Symp. Laser Precis. Microfabr. 145–151 (2003).
https://doi.org/10.1117/12.540730.
Fan, Z., Dong, X., Wang, K., Duan, W., Wang, R., Mei, X., Wang, W., Cui, J., Yuan, X., Xu, C. Effect of drilling allowance on TBC delamination, spatter and re-melted cracks characteristics in laser drilling of TBC coated superalloys. Inter. J. Mach. Tool. Manuf. 106, 1–10 (2016).
https://doi.org/10.1016/j.ijmachtools.2016.03.008.
Fan, Z., Wang, K., Dong, X., Duan, W., Wang, R., Mei, X., Wang, W., Cui, J., Zhang, S., Xu, C. Evaluation of microstructural evolution and corrosion types in ultrasonic assisted laser re-melted thermal barrier coatings under exposure to molten salts. Mater. Lett. 188, 145–148 (2017). https://doi.org/10.1016/j.matlet.2016.11.037.
Fan, Z., Wang, K., Dong, X., Wang, R., Duan, W., Mei, X., Wang, W., Cui, J., Zhang, S., Xu, C. The role of the surface morphology and segmented cracks on the damage forms of laser re-melted thermal barrier coatings in presence of a molten salt (Na2SO4+ V2O5). Corros. Sci. 115, 56–67 (2017).
https://doi.org/10.1016/j.corsci.2016.11.011.
Feng, X. J., Jiang, L. Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18(23), 3063–3078 (2006).
https://doi.org/10.1002/adma.200501961.
Feng, Q., Picard, Y., N., Liu, H., Yalisove, S. M., Mourou, G., Pollock, T. M. Femtosecond laser micromachining of a single-crystal superalloy. Scrip. Mater. 53(5), 511–516 (2005).
https://doi.org/10.1016/j.scriptamat.2005.05.006.
Feng, W., Chu, X., Hong, Y., Deng, D. Surface morphology analysis using fractal theory in micro electrical discharge machining. Mater. Trans. 58, 433−441 (2017).
https://doi.org/10.2320/matertrans.M2016381.
Gachot, C., Rosenkranz, A., Hsu, S. M., Costa, H. L. A critical assessment of surface texturing for friction and wear improvement. Wear 372, 21−41 (2017).
https://doi.org/10.1016/j.wear.2016.11.020.
Gadelmawla, E. S., Koura, M. M., Maksoud, T. M. A., Elewa, I. M., Soliman, H. H. Roughness parameters. J. mater. process. Tech. 123(1), 133–145 (2002).
https://doi.org/10.1016/S0924-0136(02)00060-2.
Ghosh, A., Sadeghi, F. A novel approach to model effects of surface roughness parameters on wear. Wear 338, 73–94 (2015).
https://doi.org/10.1016/j.wear.2015.04.022.
Godet, M. The third body approach, a mechanical view of wear. Wear 100, 437–452 (1984).
https://doi.org/10.1016/0043-1648(84)90025-5.
Good, R. J. Contact angle, wetting, and adhesion: a critical review. J. Adhes. Sci. Technol. 6(12), 1269−1302 (1992).
https://doi.org/10.1163/156856192X00629.
Gräf, S., Müller, F. A. Polarisation-dependent generation of fs-laser induced periodic surface structures. Appl. Surf. Sci. 331, 150–155 (2015).
https://doi.org/10.1016/j.apsusc.2015.01.056.
Gregorčič, P., Conradi, M., Hribar, L., Hočevar, M. Long-term influence of laser-processing parameters on (super) hydrophobicity development and stability of stainless-steel surfaces. Mater. 11(11), 2240~1–15 (2018).
https://doi.org/10.3390/ma11112240.
Gregorčič, P., Sedlaček, M., Podgornik, B., Reif, J. Formation of laser-induced periodic surface structures (LIPSS) on tool steel by multiple picosecond laser pulses of different polarizations. Appl. Surf. Sci. 387, 698–706 (2016).
https://doi.org/10.1016/j.apsusc.2016.06.174.
Gualtieri, E., Borghi, A., Calabri, L., Pugno, N., Valeri, S. Increasing nanohardness and reducing friction of nitride steel by laser surface texturing. Tribol. Int. 42(5), 699–705 (2009).
https://doi.org/10.1016/j.triboint.2008.09.008.
Guo, K. W. Effect of polishing parameters on morphology of DF2 (AISI-O1) steel surface polished by Nd: YAG laser. Surf. Eng. 25(3), 187–195 (2009).
https://doi.org/10.1179/026708408X336382.
Hafiz, A. M. K., Bordatchev, E. V., Tutunea-Fatin, R. O. Influence of overlap between the laser beam tracks on surface quality in laser polishing of AISI H13 tool steel. J. Manuf. Proc. 14, 425–434 (2012).
https://doi.org/10.1016/j.jmapro.2012.09.004.
Hamrock, B. J., Schmid, S. R., Jacobson, B. O., Fundamentals of Fluid Film Lubrication (Marcel Dekker, New York, 2004) ().
Hirayama, Y., Obara, M. Heat-affected zone and ablation rate of copper ablated with femtosecond laser. J. Appl. Phys. 97(6), 064903~1–7 (2005).
https://doi.org/10.1063/1.1852692.
Hermens, U., Kirner, S. V., Emonts, C. Comanns, P., Skoulas, E., Mimidis, A., Mescheder, H., Winands, K., Krüger, J., Stratakis E., Bonse J. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials. Appl. Surf. Sci. 418, 499–507 (2017).
https://doi.org/10.1016/j.apsusc.2016.12.112.
Hnatovsky, C., Taylor, R. S., Rajeev, P. P., Simova, E., Bhardwaj, V. R., Rayner, D. M., Corkum, P. B. Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica. Appl. Phys. Lett. 87(1), 014104~1–3 (2005).
https://doi.org/10.1063/1.1991991.
Hoła, J., Sadowski, Ł., Reiner, J., Stach, S. Usefulness of 3D surface roughness parameters for nondestructive evaluation of pull-off adhesion of concrete layers. Constr. Build. Mater. 84, 111–120 (2015).
https://doi.org/10.1016/j.conbuildmat.2015.03.014.
Hua, M., SeDao, S. T. M., Tam, H. Surface transformation of DF-2 steel after continuous mode laser irradiation. J. Mater. Process Tech. 192–193, 89–96 (2007).
https://doi.org/10.1016/j.jmatprotec.2007.04.037.
Hua, M., Shao, T., Hong, Y. T., Man, E. C. H. Influence of pulse duration on the surface morphology of ASSAB DF-2 (AISI-01) cold work steel treated by YAG laser. Surf. Coat. Tech. 185(2–3), 127–136 (2004).
https://doi.org/10.1016/j.surfcoat.2004.01.007.
Huang, M., Zhao, F., Cheng, Y., Xu, N., Xu, Z. Large area uniform nanostructures fabricated by direct femtosecond laser ablation. Opt. Express 16(23), 19354-19365 (2008).
https://doi.org/10.1364/OE.16.019354.
ISO 21254-1:2011, Lasers and laser-related equipment — Test methods for laser-induced damage threshold — Part 1: Definitions and general principles.
https://www.iso.org/standard/43001.html.
ISO 25178-2:2012, Geometrical product specifications (GPS) — Surface texture: Areal — Part 2: Terms, definitions and surface texture parameters.
https://www.iso.org/standard/42785.html.
Jain, R., Pitchumani, R. Fractal model for wettability of rough surfaces. Langmuir 33(28), 7181−7190 (2017).
https://doi.org/10.1021/acs.langmuir.7b01524.
Ju Feng Special Steel Co. Ltd. (Taiwan, ROC.)
https://www.jfs-steel.com/en/product/SKD61.html.
Kalin, M., Polajnar, M. The correlation between the surface energy, the contact angle and the spreading parameter, and their relevance for the wetting behaviour of DLC with lubricating oils. Tribol. Int. 66, 225−233 (2013).
https://doi.org/10.1016/j.triboint.2013.05.007.
Kalpakjian, S., Schmid, S. Manufacturing Processes for Engineering Materials. Pearson (2014).
ISBN: 978-0-13227-271-1.
Kam, D. H., Bhattacharya, S., Mazumder, J. Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification. J. Micromech. Microeng. 22(10), 105019~1–6 (2012).
https://doi.org/10.1088/0960-1317/22/10/105019.
Keilmann, F. Laser-driven corrugation instability of liquid metal surfaces. Phys. Rev. Lett. 51(23), 2097–2100 (1983).
https://doi.org/10.1103/PhysRevLett.51.2097.
Khang, D., Lu, J., Yao, C., Haberstroh, K. M., Webster, T. J. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29(8), 970–983 (2008).
https://doi.org/10.1016/j.biomaterials.2007.11.009.
Kiedrowski, T., Willenborg, E., Hack, S., Wissenbach, K. Generation of design structures by selection polishing of metals with laser radiation. Physcs. Proc. 297−300 (2005).
Kietzig, A. M., Hatzikiriakos, S. G., Englezos, P. Patterned superhydrophobic metallic surfaces. Langmuir 25(8), 4821–4827 (2009).
https://doi.org/10.1021/la8037582.
Kietzig, A. M., Negar Mirvakili, M., Kamal, S., Englezos, P., Hatzikiriakos, S. G. Laser-patterned super-hydrophobic pure metallic substrates: Cassie to Wenzel wetting transitions. J. Adhes. Sci. Technol. 25(20), 2789-2809 (2011).
https://doi.org/10.1163/016942410X549988.
Kim, H. S., Bush, M. B. The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct. Mater. 11(3), 361–367 (1999).
https://doi.org/10.1016/S0965-9773(99)00052-5.
Kirner, S. V., Hermens, U., Mimidis, A., Skoulas, E., Florian, C., Hischen, F., Plamadeala, C., Baumgartner, W., Winands, K., Mescheder, H., Krüger, J., Solis, J., Siegel, J., Stratakis E., Bonse J. Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel. Appl. Phys. A 123(12), 754~1–13 (2017).
https://doi.org/10.1007/s00339-017-1317-3.
Korte, F., Nolte, S., Chichkov, B. N., Bauer, T., Kamlage, G., Wagner, T., Fallnich, C., Welling, H. Far-field and near-field material processing with femtosecond laser pulses. Appl. Phys. A 69(1), S7–S11 (1999).
https://doi.org/10.1007/s003399900391.
Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G. Friction and wear behavior of laser textured surface under lubricated initial point contact. Wear 271(9−10), 1719–1725 (2011).
https://doi.org/10.1016/j.wear.2010.12.049.
Krishnan, A., Fang, F. Review on mechanism and process of surface polishing using lasers. Front. Mech. Eng. 14(3), 299–319 (2019).
https://doi.org/10.1007/s11465-019-0535-0.
Krüger, J., Kautek, W. Ultrashort pulse laser interaction with dielectrics and polymers. Adv. Polym. Sci. 168, 247–90 (2004).
https://doi.org/10.1007/b12683.
Lamikiz, A., Sánchez, J. A., López de Lacalle, L. N., del Pozo, D., Etayo, J. M. Surface roughness improvement using laser-polishing techniques. Mater. Sci. Forum 526, 217–222 (2006).
https://doi.org/10.4028/www.scientific.net/MSF.526.217.
Lamikiz, A., Sánchez, J. A., López de Lacalle, L. N., Arana, J. L. Laser polishing of parts built up by selective laser sintering. Int. J. Mach. Tool Manu. 47, 2040–2050 (2007).
https://doi.org/10.1016/j.ijmachtools.2007.01.013.
Lednev, V. N., Pershin, S. M., Ionin, A. A., Kudryashov, S. I., Makarov, S. V., Ligachev, A. E., Rudenko, A. A., Chmelnitsky, R. A., Bunkin, A. F. Laser ablation of polished and nanostructured titanium surfaces by nanosecond laser pulses. Spectrochim. Acta. B 88, 15–19 (2013).
https://doi.org/10.1016/j.sab.2013.07.010.
Li, J., Zhou, Y., Fan, F., Du, F., Yu, H. Controlling surface wettability and adhesive properties by laser marking approach. Opt. Laser Technol. 115, 160−165 (2019).
https://doi.org/10.1016/j.optlastec.2019.02.023.
Ling, E. J. Y., Saïd, J., Brodusch, N., Gauvin, R., Servio, P., Kietzig, A. M. Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium. Appl. Surf. Sci. 353, 512–521 (2015).
https://doi.org/10.1016/j.apsusc.2015.06.137.
Liu, L. Y., Chen, F. Q., Yang, W., Tan, W. Establish and validate of the model between fractal dimension and milling parameters. Mach. Des. Manuf. 1001−3997, 122−126 (2015).
Lomax, R. G., Hahs-Vaughn, D. L. Statistical Concepts - A Second Course. (New York: Taylor & Francis Group Publishing) (2015)
Ma, C., Vadali, M., Duffie, N. A., Pfefferkorn, F. E., Li, X. Melt pool flow and surface evolution during pulsed laser micro polishing of Ti6Al4V. J. Manuf. Sci. Eng. 135, 061023~1–7 (2013).
https://doi.org/10.1115/1.4025819.
Mahmood, M. A., Tsai, T. Y., Hwu, Y. J., Lin, W. J., Liu, L. C., Lai, J. Y., Pan, J. W., Li, W. L., Lin, J. F. Effect of fractal parameters on optical properties of cold rolled aluminum alloy strips with induced surface deflection: Simulations and experimental correlations. J. Mater. Process. Tech. 279, 116554~1–17 (2020).
https://doi.org/10.1016/j.jmatprotec.2019.116554.
Mandelbrot, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636−638 (1967).
https://doi.org/10.1126/science.156.3775.636.
Mannion, P., Magee, J., Coyne, E., O'Connor, G. M. Ablation thresholds in ultrafast laser micromachining of common metals in air. Opt. Photo. Technol. Appl. 4876, 470−479 (2003).
https://doi.org/10.1117/12.463744.
Marmur, A. The lotus effect: superhydrophobicity and metastability. Langmuir 20(9), 3517−3519 (2004).
https://doi.org/10.1021/la036369u.
Marmur, A, Della Volpe, C., Siboni, S., Amirfazli, A., Drelich, J. W. Contact angles and wettability: Towards common and accurate terminology. Surf. Innov. 5(1) 3−8 (2017).
https://doi.org/10.1680/jsuin.17.00002.
Martan, J., Cibulka, O., Semmar, O. Nanosecond pulse laser melting investigation by IR radiometry and reflection-based methods. Appl. Surf. Sci. 253, 1190−1177 (2006).
https://doi.org/10.1016/j.apsusc.2006.01.077.
Martín, C., Rius, G., Borrisé, X., Pérez-Murano, F. Nanolithography on thin layers of PMMA using atomic force microscopy. Nanotechnology 16(2005), 1016−1022 (2005).
https://doi.org/10.1088/0957-4484/16/8/003.
Meijer, J., Du, K., Gillner, A., Hoffmann, D., Kovalenko, V. S., Masuzawa, T., Ostendorf, A., Poprawe, R., Schulz, W. Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons. CIRP Ann-Manuf. Techn. 51(2), 531−550 (2002).
https://doi.org/10.1016/S0007-8506(07)61699-0.
Milchberg, H. M., McNaught, S. J., Parra, E. Plasma hydrodynamics of the intense laser-cluster interaction. Phys. Rev. E. 64(5), 056402~1−7 (2001).
https://doi.org/10.1103/PhysRevE.64.056402.
Mishra, S. P., Polycarpou, A. A. Tribological studies of unpolished laser surface textures under starved lubrication conditions for use in air-conditioning and refrigeration compressors. Tribol. Int. 44(12), 1890−1901 (2011).
https://doi.org/10.1016/j.triboint.2011.08.005.
Mourier, L., Mazuyer, D., Lubrecht, A. A., Donnet, C., Audouard, E. Action of a femtosecond laser generated micro-cavity passing through a circular EHL contact. Wear 264(5−6), 450−456 (2008).
https://doi.org/10.1016/j.wear.2006.08.037.
Nafees, M., Liaqut, W., Ali, S., Shafique, M. A. Synthesis of ZnO/Al: ZnO nanomaterial: structural and band gap variation in ZnO nanomaterial by Al doping. Appl. Nanosci. 3(1), 49−55 (2013).
https://doi.org/10.1007/s13204-012-0067-y.
Ning, J., Zhang, L. J., Wang, A., Bai, Q. L., Yang, J. N., Zhang, J. X. Effects of double-pass welding and extrusion on mechanical properties of fiber laser welded 1.5-mm thick T2 copper joints. J. Mater. Process. Tech. 237, 75−87 (2016).
https://doi.org/10.1016/j.jmatprotec.2016.06.011.
Nüsser, C., Sändker, H., Willenborg, E. Pulsed laser micro polishing of metals using dual-beam technology. Phys. Procedia 41, 346−355 (2013).
https://doi.org/10.1016/j.phpro.2013.03.087.
Nüsser, C., Wehrmann, I., Willenborg, E. Influence of intensity distribution and pulse duration on laser micro polishing. Phys. Procedia 12, 462−491 (2011).
https://doi.org/10.1016/j.phpro.2011.03.057.
Patir, N., Cheng, H. S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. ASME J. Lubr. Technol. 100(1), 12−17 (1978).
https://doi.org/10.1115/1.3453103.
Pawelski, H. Applicability of fractal concepts to surface roughness. Steel Res. 67(4), 144−148 (1996).
https://doi.org/10.1002/srin.199605471.
Pawelski, H. Interaction between mechanics and tribology for cold rolling of strip with special emphasis on surface evolution. Techn. Univ (2004).
Pearson, K. Das Fehlergesetz Und Seine Verallgemeiner-Ungen Durch Fechner Und Pearson. A REJOINDER. Biometrika 4(1-2), 169-212 (1905).
Perry, T. L., Werschmoeller, D., Duffie, N. A., Li, X., Pfefferkorn, F. E. The effect of laser pulse duration and feed rate on pulsed laser polishing of microfabricated nickel samples. J. Manu. Sci. Eng. 131, 021002~1−9 (2009).
https://doi.org/10.1115/1.3106033.
Pfefferkorn, F. E., Duffie, N. A., Li, X., Vadali, M., Ma, C. Improving surface finish in pulsed laser micro polishing using thermocapillary flow. CIRP Annals-Munuf. Techn. 62(1), 203−206 (2013).
https://doi.org/10.1016/j.cirp.2013.03.112.
Phillips, K. C., Gandhi, H. H., Mazur, E., Sundaram, S. K. Ultrafast laser processing of materials: a review. Adv. Opt. Photonics, 7(4), 684−712 (2015).
https://doi.org/10.1364/AOP.7.000684.
Popov, V. L., Gervé, A., Kehrwald, B., Smolin, I. Y. Simulation of wear in combustion engines. Comp. Mat. Sci. 19, 285−291 (2000).
https://doi.org/10.1016/S0927-0256(00)00165-8.
Pu, Y., Zhao, Y., Zhang, H., Zhao, G., Meng, J., Song, P. Study on the three-dimensional topography of the machined surface in laser-assisted machining of Si3N4 ceramics under different material removal modes. Ceram. Int. 46(5), 5695−5705 (2020).
https://doi.org/10.1016/j.ceramint.2019.11.017.
Ramos, J. A., Bourell, D. L., Beaman, J. J. Surface over-melt during laser polishing of indirect-SLS metal parts. MRS Symp. Proc. 758, 53−61 (2002).
https://doi.org/10.1557/PROC-758-LL1.9.
Ramos, J. A., Murphy, J., Wood, K., Bourell, D. L., Beaman, J. J. Surface Roughness Enhancement of Indirect-SLS Metal Parts by Laser Surface Polishing. Sol. Freeform Fabric. 28−38 (2001).
http://dx.doi.org/10.26153/tsw/3233.
Regenfuß, P., Hartwig, L., Klotzer, S., Ebert, R., Brabant, T., Petsch, T., Exner, H. Industrial freeform generation of microtools by laser micro sintering. Rapid Prototyp. J. 4, 709–719 (2005).
https://doi.org/10.1108/13552540510573356.
Reif, J., Costache, F., Henyk, M., Pandelov, S. V. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci. 197, 891−895 (2002).
https://doi.org/10.1016/S0169-4332(02)00450-6.
Ren, Y., Zhang, L., Romero, C., Vázquez de Aldana, J. R., Chen, F. Femtosecond laser irradiation on Nd: YAG crystal: Surface ablation and high-spatial-frequency nanograting. Appl. Surf. Sci. 441, 372−380 (2018).
https://doi.org/10.1016/j.apsusc.2018.01.217.
Rudenko, A., Colombier, J. P., Höhm, S., Rosenfeld, A., Krüger, J., Bonse, J., Itina, T. E. Spontaneous periodic ordering on the surface and in the bulk of dielectrics irradiated by ultrafast laser: a shared electromagnetic origin. Sci. Rep. 7(1), 1−14 (2017).
https://doi.org/10.1038/s41598-017-12502-4.
Sanner, N., Utéza, O., Bussiere, B., Coustillier, G., Leray, A., Itina, T., Sentis, M. Measurement of femtosecond laser-induced damage and ablation thresholds in dielectrics. Appl. Phys. A 94(4), 889−897 (2009).
https://doi.org/10.1007/s00339-009-5077-6.
Schille, J., Loeschner, U., Ebert, R., Scully, P., Goddard, N., Exner, H. Laser micro processing using a high repetition rate femtosecond laser. J. Laser Appl. 2010(1), 1491−1499 (2010).
https://doi.org/10.2351/1.5062008.
Schilling, N., Paschke, M., Hendow, S. T., Klotzbach, U. Formation of tribological structures by laser ablation. Proc. SPIE 8243, 82430−82439X (2012).
https://doi.org/10.1117/12.908940.
Sedlaček, M., Podgornik, B., Vižintin, J. Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol. Int. 48, 102−112 (2012).
https://doi.org/10.1016/j.triboint.2011.11.008.
Sedlaček, M., Gregorčič, P., Podgornik, B. Use of the roughness parameters Ssk and Sku to control friction—A method for designing surface texturing. Tribol. T. 60(2), 260−266 (2017).
https://doi.org/10.1080/10402004.2016.1159358.
Segu, D. Z., Choi, S. G., Choi, J., Kim, S. S. The effect of multi-scale laser textured surface on lubrication regime. Appl. Surf. Sci. 270, 58−63 (2013).
https://doi.org/10.1016/j.apsusc.2012.12.068.
Semaltianos, N. G., Perrie, W., French, P., Sharp, M., Dearden, G., Watkins, K. G. Femtosecond laser surface texturing of a nickel-based superalloy. Appl. Surf. Sci. 255(5), 2796−2802 (2008).
https://doi.org/10.1016/j.apsusc.2008.08.043.
Senegačnik, M., Hočevar, M., Gregorčič, P. Influence of processing parameters on characteristics of laser-induced periodic surface structures on steel and titanium. Procedia CIRP 81, 99–103 (2019).
https://doi.org/10.1016/j.procir.2019.03.018.
Shakhvorostov, D., Gleising, B., Büscher, R., Dudzinski, W., Fischer, A., Scherge, M. Microstructure of tribologically induced nanolayers produced at ultra-low wear rate. Wear 263, 1259−1265 (2007).
https://doi.org/10.1016/j.wear.2007.01.127.
Shi, D., Gibson, I. Surface finishing of selective laser sintering parts with robot. 1998 Int. Sol. Freeform Fabric. Symp (1998).
http://dx.doi.org/10.26153/tsw/545.
Shimotsuma, Y., Kazansky, P. G., Qiu, J., Hirao, K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 247405~1−4 (2003).
https://doi.org/10.1103/PhysRevLett.91.247405.
Singh, Z., Patel, D. S., Ramkumar, J., Balani, K. Single step laser surface texturing for enhancing contact angle and tribological properties. Int. J. Adv. Manuf. Tech. 100(5−8), 1253−1267 (2019).
https://doi.org/10.1007/s00170-018-1579-8.
Stachowiak, G. W., Batchelor, A. W., Stachowiak, G. B. Experimental methods in tribology. Elsevier (2004).
ISBN: 978-0-44451-589-6.
Stachowiak, G., Batchelor, A. W. Engineering Tribology. Elsevier (2013).
ISBN: 978-0-12397-047-3.
Stanley, H. M., Bogy, D. B. Effect of surface conformity on friction. Wear 168(1−2), 105−108 (1993).
https://doi.org/10.1016/0043-1648(93)90204-Y.
Steen, W. M., Mazumder, J. Laser Material Processing. (London: Springer–Verlag Publishing) (2010).
ISBN: 978-1-84996-061-8.
Stoian, R., Rosenfeld, A., Ashkenasi, D., Hertel, I. V., Bulgakova, N. M., Campbell, E. E. B. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation. Phys. Rev. Lett. 88(9), 097603~1−4 (2002).
https://doi.org/10.1103/PhysRevLett.88.097603.
Sudeep, U., Tandon, N., Pandey, R. K. Performance of lubricated rolling/sliding concentrated contacts with surface textures: a review. J. Tribol. 137(3), 031501~1−11 (2015).
https://doi.org/10.1115/1.4029770.
Tam, H. Y., Cheng, H. An investigation of the effect of the tool path on the removal of material in polishing. J. Mater. Proc. Techn. 210, 807−818 (2010).
https://doi.org/10.1016/j.jmatprotec.2010.01.012.
Temmler, A., Willenborg, E., Wissenbach, K. Design surfaces by laser remelting. Phys. Procedia 12, 419−437 (2011).
https://doi.org/10.1016/j.phpro.2011.03.053.
Temmler, A., Willenborg, E., Wissenbach, K. Laser polishing. Proc. SPIE. 8243, 82430~1−7 (2012).
https://doi.org/10.1117/12.906001.
Temple, P. A., Lowdermilk, W. H., Milam, D. Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm. Appl. Optics. 21(18), 3249-3255 (1982).
https://doi.org/10.1364/AO.21.003249.
Trtica, M. S., Gakovic, B. M., Nenadovic, T. M. Pulsed CO2 laser ablation of polished steel and titanium nitride-coated steel. P. Soc. Photo-Opt. Ins. 3885, 517–524 (2000).
https://doi.org/10.1117/12.377002.
Tull, B. R., Carey, J. E., Mazur, E., McDonald, J. P., Yalisove, S. M. Silicon surface morphologies after femtosecond laser irradiation. MRS bulletin, 31(8), 626−633 (2006).
https://doi.org/10.1557/mrs2006.160.
Ukar, E., Lamikiz A., López de Lacalle, L.N., del Poze, D., Liebana, F., Sanchez, A. Laser polishing parameter optimization on selective laser sintered parts. Int. J. Mach. Tool Manu. 8, 417−432 (2010).
https://doi.org/10.1504/IJMMM.2010.036148.
Ukar, E., Lamikiz, A., López, de Lacalle, L. N., del Poze, D., Arana, J. L. Laser polishing of tool steel with CO2 laser and high-power diode laser. Int. J. Mach. Tool Manu. 50(1), 115−125 (2010).
https://doi.org/10.1016/j.ijmachtools.2009.09.003.
Umemoto, M., Guo, Z. H., Tamura, I. Effect of cooling rate on grain size of ferrite in a carbon steel. Mater. Sci. Technol. 3(4), 249−255 (1987).
https://doi.org/10.1179/mst.1987.3.4.249.
Vadali, M., Ma, C., Duffie, N. A., Li, X., Pfefferkorn, F. E. Pulsed laser micro polishing: Surface prediction model. J. Manu. process. 14(3), 307-315 (2012).
https://doi.org/10.1016/j.jmapro.2012.03.001.
Yao, J., Zhang, C., Liu, H., Dai, Q., Wu, L., Lan, S., Gopal, A. V., Trofimov, V. A., Lysak, T. M. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl. Surf. Sci. 258(19), 7625-7632 (2012).
https://doi.org/10.1016/j.apsusc.2012.04.105.
Vincent, C., Monteil, G., Barriere, T., Gelin, J. C. Control of the quality of laser surface texturing. Microsyst. Technol. 14(9−11), 1553−1557 (2008).
https://doi.org/10.1007/s00542-008-0573-8.
Vlădescu, S. C., Olver, A. V., Pegg, I. G., Reddyhoff, T. Combined friction and wear reduction in a reciprocating contact through laser surface texturing. Wear 358, 51−61 (2016).
https://doi.org/10.1016/j.wear.2016.03.035.
Vorobyev, A. Y., Guo, C. Colorizing metals with femtosecond laser pulses. Appl. Phys. Lett. 92(4), 041914~1−3 (2008).
https://doi.org/10.1063/1.2834902.
Wang, H. Y., Bourell, D. L., Beaman, Jr. J. J. Laser polishing of silica slotted rods. Mater. Sci. Techn. 19, 382−387 (2003).
https://doi.org/10.1179/026708303225009760.
Wang. W. Z., Chen, H., Hu, Y. Z., Wang, H. Effect of surface roughness parameters on mixed lubrication characteristics. Tribol. Int. 39(6), 522−527 (2006).
https://doi.org/10.1016/j.triboint.2005.03.018.
Wang, R., Wang, K., Dong, X., Fan, Z., Duan, W., Mei, X., Wang, W., Cui, J., Zhang, S. An experimental investigation into the defects of laser-drilled holes in thermal barrier coated Inconel 718 superalloy. Inter. J. Adv. Manuf. Technol. 96(1−4), 1467−1481 (2018).
https://doi.org/10.1007/s00170-018-1592-y.
Webster, T. J., Ejiofor, J. U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomater. 25(19), 4731−4739 (2004).
https://doi.org/10.1016/j.biomaterials.2003.12.002.
Wennerberg, A., Ektessabi, A., Albrektsson, T., Johansson, C., Andersson, B. A. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int. J. Oral Max. Impl. 12(4), 486−94 (1997).
Wenzel, R. N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28(8), 988−994 (1936).
https://doi.org/10.1021/ie50320a024.
Wenzel, R.N. Surface roughness and contact angle. J. Phys. Chem. 53(9), 1466−1467 (1949).
https://doi.org/10.1021/j150474a015.
Westfall, P. H. Kurtosis as peakedness, 1905–2014. RIP. Am Stat, 68(3), 191-195 (2014).
Willenborg, E. Laserpolieren von Werkzeugstählen. Dissertation RWTH Aachen University. Shaker. Aachen. Germany (2005).
Willenborg E. Polishing with laser radiation. In: Poprawe R, ed. Tailored Light 2. Berlin: Springer, 196–203 (2011).
Willenborg, E., Wissenbach K., Poprawe R. Polishing by laser radiation. Physcs. Proc. 451−456 (2003).
Xia, Z., Fang, F., Ahearne, E., Tao, M. Advances in polishing of optical freeform surfaces: a review. J. Mater. Process. Technol. 286, 116828~1−17 (2020).
https://doi.org/10.1016/j.jmatprotec.2020.116828.
Xu, G., Dai, Y., Cui, J., Xiao, X., Mei, H., Li, H. Simulation and experiment of femtosecond laser polishing quartz material. Integr. Ferroelectr. 181(1), 60-69 (2017).
https://doi.org/10.1080/10584587.2017.1352332.
Young, T. III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London. 95, 65−87 (1805).
https://doi.org/10.1098/rstl.1805.0005.
Yu, N., Polycarpou, A. A. Contact of rough surfaces with asymmetric distribution of asperity heights. J. Tribol. 124(2), 367−376 (2002).
https://doi.org/10.1115/1.1403458.
Yuan, Y., Lee, T. R. Contact angle and wetting properties. Surf. Sci. techn. 51, 3−34 (2013).
https://doi.org/10.1007/978-3-642-34243-1_1.
Zhihao, F., Libin, L., Longfei, C., Yingchun, G. Laser polishing of additive manufactured superalloy. Proc. Cirp. 71, 150−154 (2018).
https://doi.org/10.1016/j.procir.2018.05.088.
Zhou, Y., Erb, U., Aust, K. T., Palumbo, G. The effects of triple junctions and grain boundaries on hardness and Young's Modulus in nanostructured Ni-P. Scripta. Mater. 48, 825−830 (2003).
https://doi.org/10.1016/S1359-6462(02)00511-0.