| 研究生: | 劉吟珊 Liu, Yin-Shan | 
|---|---|
| 論文名稱: | 導電AFM同軸探針設計與製造以提升AM-KPFM之空間解析度 Design and fabrication of conductive AFM coaxial probe to enhance the spatial resolution of AM-KPFM | 
| 指導教授: | 劉浩志 Liu, Hao-Chih | 
| 學位類別: | 碩士 Master | 
| 系所名稱: | 工學院 - 材料科學及工程學系 Department of Materials Science and Engineering | 
| 論文出版年: | 2020 | 
| 畢業學年度: | 108 | 
| 語文別: | 中文 | 
| 論文頁數: | 101 | 
| 中文關鍵詞: | 掃描表面電位顯微鏡 、同軸探針 、針頭開孔技術 、微機電製程 、雜散電容效應 、有限元素分析模擬 | 
| 外文關鍵詞: | Kelvin probe force microscopy, coaxial probe, tip exposure, MEMs fabrication, stray capacitance effect, FEA simulation | 
| 相關次數: | 點閱:106 下載:0 | 
| 分享至: | 
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 | 
表面電位顯微鏡 (Kelvin Probe Force Microscopy, KPFM) 用於量測奈米尺度下樣品的功函數和表面電位分布,發展以來已經被廣泛應用於半導體、氧化物材料、光電元件及生物分子的分析、電子轉移等方面。其中振幅調制模式 (Amplitude Modulation,以下簡稱AM-KPFM) 的成像解析度會受到探針本身的雜散電容效應 (Stray Capacitance Effect) 所限制,此效應主要來自量測時,探針懸臂樑與樣品之間產生的長程靜電作用力,造成量測到的接觸電位差並非僅來自探針針尖與樣品的反應,而是包含其他部分共同產生的雜散電容,導致所得空間解析度下降以及量測到的樣品表面電位分布變廣。隨著半導體及光電元件尺寸日漸縮小且複雜化,此現象將會造成以AM-KPFM進行奈米尺度的電性成像面臨困難,使其對於異質材料的奈米電性分析失去適用性。
本研究以傳統微機電製程,導入特殊的針頭開孔技術來開發導電AFM同軸探針,進行批量化制備以降低成本,透過同軸的結構將懸臂樑與針頭錐體進行絕緣,減少量測中的雜散電容效應,提升AM-KPFM的空間解析度。並結合有限元素分析法模擬探針的彈性係數及共振頻率,經由光罩設計製作四種不同幾何形狀的探針,探討不同的懸臂樑機械性質對量測造成的影響。製程方面,於懸臂樑及探針針頭蝕刻進行參數優化,改善懸臂樑的粗糙度和輪廓變形的問題,並採取兩階段蝕刻針頭來得到較高的針尖。另一方面,吾人使用雷射共焦顯微鏡 (3D LM) 輔助針頭開孔判斷,3D LM係利用雷射光照射樣品的反射特性生成明暗對比,得到樣品的三維影像。透過調整光阻厚度後提高製程良率,針頭開孔率可達八成以上。
同軸探針測試使用Electric-Tune的方法來針對雜散電容效應進行量化分析,結果顯示具有相近彈性係數的探針,透過同軸結構的設計,能有效降低雜散電容效應,減少29-58 % 的懸臂樑與樣品之間之靜電作用力,使AM-KPFM量測電位差的空間解析度由1.4 µm 提升至780 nm。而k值較小的探針,藉由同軸結構的改良,可改善雜散電容效應,使其靈敏度與空間解析度與一般用於KPFM之商用探針相當,有利於應用在軟性材料之電性分析,減少對於樣品的損傷。除此之外,比較四種同軸探針對量測的影響發現,藉由優化懸臂樑性質和改變懸臂樑設計來提高Q值,可進一步提升AM-KPFM量測的靈敏度。
Amplitude Modulation Kelvin probe force microscopy (AM-KPFM) is a powerful technique to measure the contact potential difference (CPD) and work functions of materials at the nanoscale. However, The spatial resolution of AM-KPFM is intrinsically limited by the stray capacitance effect, which is mainly result from the long range of the electrostatic interaction between the cantilever and the sample. As the semiconductor devices getting smaller and more complex, it will become a challenge to obtain their nanometer-scale electrical properties through KPFM. Here, we introduce a special tip exposure technique to develop the coaxial probe with MEMs fabrication. The coaxial structure makes the cantilever and cone insulated, confining the electric field to a small region at the AFM tip Besides, we use finite element method to simulate the spring constant and resonant frequency of the cantilever, making four probes of different geometry to explore the influence of cantilever mechanical properties on the measurement. The fabricated coaxial probes have openings between 0.6 and 1.7 um with a yield more than 80 %. The stray capacitance effect on the coaxial probes were quantitatively analyzed by a method of Electric Tune, which excites resonance of probe through the electrostatic interaction. The results show that for probes of similar spring constant, the one with coaxial structure can reduce the stray capacitance effect effectively, not only decreasing 29 % to 58 % of the electrostatic interaction between cantilever and sample, but enhancing the spatial resolution of AM-KPFM from 1.4 um to 780 nm. For the probe with small spring constant (k<1), we can make its resolution and sensitivity comparable to the commercial probes by making coaxial structure so that it can be beneficial for the electrical analysis of soft materials due to less damage to the sample. From the comparison of four coaxial probes, we also found that the sensitivity and accuracy of AM-KPFM measurement can be promoted by improving the property and quality factor of the cantilever.
[1]	Stanford University The Center for Probing the Nanoscale (CPN), "Scanning Probe Microscopy," 2009.
[2]	G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, "Surface studies by scanning tunneling microscopy," Physical review letters, vol. 49, no. 1, p. 57, 1982.
[3]	G. Binnig, C. F. Quate, and Ch. Gerber, "Atomic force microscope," Physical review letters, vol. 56, no. 9, p. 930, 1986.
[4]	M. Nonnenmacher, M. P. o’Boyle, and H. K. Wickramasinghe, "Kelvin probe force microscopy," Applied physics letters, vol. 58, no. 25, pp. 2921-2923, 1991.
[5]	Th. Glatzel, S. Sadewasser, and M. Ch. Lux-Steiner, "Amplitude or frequency modulation-detection in Kelvin probe force microscopy," Applied surface science, vol. 210, no. 1-2, pp. 84-89, 2003.
[6]	J. Colchero, A. Gil, and A. M. Baró, "Resolution enhancement and improved data interpretation in electrostatic force microscopy," Physical Review B, vol. 64, no. 24, p. 245403, 2001.
[7]	B. Moores, F. Hane, L. Eng, and Z. Leonenko, "Kelvin probe force microscopy in application to biomolecular films: frequency modulation, amplitude modulation, and lift mode," Ultramicroscopy, vol. 110, no. 6, pp. 708-711, 2010.
[8]	G. Cohen, E. Halpern, S. U. Nanayakkara, J. M. Luther, C. Held, R. Bennewitz, A. Boag, and Y. Rosenwaks, "Reconstruction of surface potential from Kelvin probe force microscopy images," Nanotechnology, vol. 24, no. 29, p. 295702, 2013.
[9]	M. Zhao, V. Sharma, H. Wei, R. R. Birge, J. A. Stuart, F. Papadimitrakopoulos, and B. D. Huey, "Ultrasharp and high aspect ratio carbon nanotube atomic force microscopy probes for enhanced surface potential imaging," Nanotechnology, vol. 19, no. 23, p. 235704, 2008.
[10]	C. Menozzi, G. C. Gazzadi, A. Alessandrini, and P. Facci, "Focused ion beam-nanomachined probes for improved electric force microscopy," Ultramicroscopy, vol. 104, no. 3-4, pp. 220-225, 2005.
[11]	G. Valdre and D. Moro, "3D finite element analysis of electrostatic deflection of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: I. Triangular shaped cantilevers with symmetric pyramidal tips," Nanotechnology, vol. 19, no. 40, p. 405501, 2008.
[12]	G. Valdrè and D. Moro, "3D finite element analysis of electrostatic deflection and shielding of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: II. Rectangular shaped cantilevers with asymmetric pyramidal tips," Nanotechnology, vol. 19, no. 40, p. 405502, 2008.
[13]	K. A. Brown, J. A. Aguilar, and R. M. Westervelt, "Coaxial atomic force microscope tweezers," Applied Physics Letters, vol. 96, no. 12, p. 123109, 2010.
[14]	N. Harjee, A. G. F. Garcia, M. König, J. C. Doll, D. Goldhaber-Gordon, and B. L. Pruitt, "Coaxial tip piezoresistive scanning probes for high-resolution electrical imaging," presented at the 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), Wanchai, Hong Kong, China, 24-28 Jan. 2010, 
[15]	K. A. Brown, K. J. Satzinger, and R. M. Westervelt, "High spatial resolution Kelvin probe force microscopy with coaxial probes," Nanotechnology, vol. 23, no. 11, p. 115703, 2012.
[16]	A. J. Haemmerli, N. Harjee, M. Koenig, A. G. F. Garcia, D. Goldhaber-Gordon, and B. L. Pruitt, "Self-sensing cantilevers with integrated conductive coaxial tips for high-resolution electrical scanning probe metrology," Journal of Applied Physics, vol. 118, no. 3, 2015.
[17]	H. Fuchs, H. Hölscher, and A. Schirmeisen, "Scanning Probe Microscopy," in Encyclopedia of Materials: Science and Technology (Second Edition), ed. New York: Elsevier, Amsterdam, 2005, pp. 1-12.
[18]	J. N. Israelachvili, Intermolecular and Surface Forces 3rd Edition. Oxford: Elsevier LTD, 2011.
[19]	陳建淼、洪連輝. (2009). 原子力顯微鏡(Atomic Force Microscopy)  [物理,現代科技簡介,科學Online]. 
[20]	JPK Instruments, NanoWizard AFM Handbook(V.2.2a). 2012.
[21]	Bruker corporation. (2011, June 1). LiftMode. Available:
https://blog.brukerafmprobes.com/category/guide-to-spm-and-afm-modes/
[22]	Greg Haugstad, Atomic Force Microscopy: Understanding Basic Modes and Advanced Applications, Hoboken, New Jersey: John Wiley & Sons, Inc, 2012. [Online]. Available.
[23]	Bruker corporation, DIMENSION ICON MANUAL-V.4. 2015.
[24]	N. D. Lang and W. Kohn, "Theory of metal surfaces: work function," Physical Review B, vol. 3, no. 4, p. 1215, 1971.
[25]	W. Melitz, J. Shen, A. C. Kummel, and S. Lee, "Kelvin probe force microscopy and its application," Surface science reports, vol. 66, no. 1, pp. 1-27, 2011.
[26]	S. Sadewasser and Th. Glatzel, Kelvin Probe Force Microscopy: From Single Charge Detection to Device Characterization. Cham, Switzerland: Springer, 2018.
[27]	W.A. Zisman, "A new method of measuring contact potential differences in metals," Review of Scientific Instruments, vol. 3, no. 7, pp. 367-370, 1932.
[28]	J.M.R. Weaver and D.W. Abraham, "High resolution atomic force microscopy potentiometry," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 9, no. 3, pp. 1559-1561, 1991.
[29]	S. Sadewasser and Th. Glatzel, Kelvin probe force microscopy. Springer, 2012.
[30]	U. Zerweck, C. Loppacher, T. Otto, S. Grafström, and L. M. Eng, "Accuracy and resolution limits of Kelvin probe force microscopy," Physical Review B, vol. 71, no. 12, p. 125424, 2005.
[31]	陳瑜, 龔力, 杜相, 陳思, 謝偉廣, 張衛紅, 陳建, 謝方艷, "XPS與UPS 測量幾種材料功函數的比較," 分析測試學報, no. 2018 年 07月, pp. 796-803, 2018.
[32]	Hans Lüth, Solid surfaces, interfaces and thin films. Berlin Heidelberg: Springer, 2001.
[33]	N. A. Surplice and R. J. D'arcy, "A critique of the Kelvin method of measuring work functions," Journal of Physics E: Scientific Instruments, vol. 3, no. 7, p. 477, 1970.
[34]	H. Sugimura, Y. Ishida, K. Hayashi, O. Takai, and N. Nakagiri, "Potential shielding by the surface water layer in Kelvin probe force microscopy," Applied physics letters, vol. 80, no. 8, pp. 1459-1461, 2002.
[35]	O. Tal, W. Gao, C. K. Chan, A. Kahn, and Y. Rosenwaks, "Measurement of interface potential change and space charge region across metal/organic/metal structures using Kelvin probe force microscopy," Applied physics letters, vol. 85, no. 18, pp. 4148-4150, 2004.
[36]	H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer, "Resolution and contrast in Kelvin probe force microscopy," Journal of applied physics, vol. 84, no. 3, pp. 1168-1173, 1998.
[37]	Ch. Sommerhalter, Th. Glatzel, Th. W. Matthes, A. Jäger-Waldau, and M. Ch. Lux-Steiner, "Kelvin probe force microscopy in ultra high vacuum using amplitude modulation detection of the electrostatic forces," Applied surface science, vol. 157, no. 4, pp. 263-268, 2000.
[38]	S. Belaidi, P. Girard, and G. Leveque, "Electrostatic forces acting on the tip in atomic force microscopy: Modelization and comparison with analytic expressions," Journal of applied physics, vol. 81, no. 3, pp. 1023-1030, 1997.
[39]	S. Sadewasser, Th. Glatzel, R. Shikler, Y. Rosenwaks, and M. Ch. Lux-Steiner, "Resolution of Kelvin probe force microscopy in ultrahigh vacuum: comparison of experiment and simulation," Applied Surface Science, vol. 210, no. 1-2, pp. 32-36, 2003.
[40]	E. Strassburg, A. Boag, and Y. Rosenwaks, "Reconstruction of electrostatic force microscopy images," Review of Scientific instruments, vol. 76, no. 8, p. 083705, 2005.
[41]	B. Mao, Q. Tao, and G. Li, "Quantitative analysis of the resolution and sensitivity of Kelvin probe force microscopy using carbon nanotube functionalized probes," Measurement Science and Technology, vol. 23, no. 10, p. 105404, 2012.
[42]	H. J. Leamy, "Charge collection scanning electron microscopy," Journal of Applied Physics, vol. 53, no. 6, pp. R51-R80, 1982.
[43]	J. S. Kim, B. Lägel, E. Moons, N. Johansson, I. D. Baikie, W. R. Salaneck, R. H. Friend, and F. Cacialli, "Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison," Synthetic metals, vol. 111, pp. 311-314, 2000.
[44]	S. Günther, B. Kaulich, L. Gregoratti, and M. Kiskinova, "Photoelectron microscopy and applications in surface and materials science," Progress in surface science, vol. 70, no. 4-8, pp. 187-260, 2002.
[45]	H. Masuda, N. Ishida, Y. Ogata, D. Ito, and D. Fujita, "Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy," Nanoscale, vol. 9, no. 2, pp. 893-898, 2017.
[46]	N. B. Bercu, L. Giraudet, O. Simonetti, and M. Molinari, "Development of an improved Kelvin probe force microscope for accurate local potential measurements on biased electronic devices," Journal of microscopy, vol. 267, no. 3, pp. 272-279, 2017.
[47]	M. Lanza, Ed. Conductive Atomic Force Microscopy: Applications in Nanomaterials. Weinheim,Germany: Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr, 2017.
[48]	A. Liscio, V. Palermo, K. Müllen, and P. Samorì, "Tip− sample interactions in Kelvin probe force microscopy: quantitative measurement of the local surface potential," The Journal of Physical Chemistry C, vol. 112, no. 44, pp. 17368-17377, 2008.
[49]	M. E. Welland and M. P. Murrell, "Characterisation of electronic and structural properties of thin silicon dioxide films by scanned probe microscopy," Scanning, vol. 15, no. 5, pp. 251-256, 1993.
[50]	M. P. Murrell, M. E. Welland, S. J. O’Shea, T. M. H. Wong, J. R. Barnes, A. W. McKinnon, M. Heyns, and S. Verhaverbeke, "Spatially resolved electrical measurements of SiO2 gate oxides using atomic force microscopy," Applied physics letters, vol. 62, no. 7, pp. 786-788, 1993.
[51]	S. J. O’shea, R. M. Atta, and M. E. Welland, "Characterization of tips for conducting atomic force microscopy," Review of scientific instruments, vol. 66, no. 3, pp. 2508-2512, 1995.
[52]	T. Trenkler, T. Hantschel, R. Stephenson, P. De Wolf, W. Vandervorst, L. Hellemans, A. Malavé, D. Büchel, E. Oesterschulze, and W. Kulisch, "Evaluating probes for “electrical” atomic force microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 18, no. 1, pp. 418-427, 2000.
[53]	H. Bhaskaran, A. Sebastian, and M. Despont, "Nanoscale PtSi tips for conducting probe technologies," IEEE Transactions on Nanotechnology, vol. 8, no. 1, pp. 128-131, 2008.
[54]	M. R. Gullo, P. L. T. M. Frederix, T. Akiyama, A. Engel, N. F. deRooij, and U. Staufer, "Characterization of microfabricated probes for combined atomic force and high-resolution scanning electrochemical microscopy," Analytical Chemistry, vol. 78, no. 15, pp. 5436-5442, Aug 2006.
[55]	P. L. T. M. Frederix, M. R. Gullo, T. Akiyama, A. Tonin, N. F. de Rooij, U. Staufer, and A. Engel, "Assessment of insulated conductive cantilevers for biology and electrochemistry," Nanotechnology, vol. 16, no. 8, pp. 997-1005, Aug 2005.
[56]	B. J. Rodriguez, S. Jesse, K. Seal, A. P. Baddorf, S. V. Kalinin, and P. D. Rack, "Fabrication, dynamics, and electrical properties of insulated scanning probe microscopy probes for electrical and electromechanical imaging in liquids," Applied Physics Letters, vol. 91, no. 9, Aug 2007, Art. no. 093130.
[57]	B. T. Rosner, T. Bork, V. Agrawal, and D. W. van der Weide, "Microfabricated silicon coaxial field sensors for near-field scanning optical and microwave microscopy," Sensors and Actuators a-Physical, vol. 102, no. 1-2, pp. 185-194, Dec 2002, Art. no. Pii s0924-4247(02)00341-2.
[58]	M. Tabib-Azar and Y. Q. Wang, "Design and fabrication of scanning near-field microwave probes compatible with atomic force microscopy to image embedded nanostructures," Ieee Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 971-979, Mar 2004.
[59]	T. Akiyama, M. R. Gullo, N. F. de Rooij, A. Tonin, H. R. Hidber, P. L. T. M. Frederix, A. Engel, and U. Staufer, "Development of insulated conductive probes with platinum silicide tips for atomic force microscopy in cell biology," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 43, no. 6B, pp. 3865-3867, Jun 2004.
[60]	R. J. Fasching, Y. Tao, and F. B. Prinz, "Cantilever tip probe arrays for simultaneous SECM and AFM analysis," Sensors and Actuators B-Chemical, vol. 108, no. 1-2, pp. 964-972, Jul 2005.
[61]	J. H. Noh, M. Nikiforov, S. V. Kalinin, A. A. Vertegel, and P. D. Rack, "Nanofabrication of insulated scanning probes for electromechanical imaging in liquid solutions," Nanotechnology, vol. 21, no. 36, Sep 2010, Art. no. 365302.
[62]	S. P. Timoshenko, "Strength of Materials, ed," ed: Malabar: Krieger, 1984.
[63]	L. Zhang, R. Barrett, P. Cloetens, C. Detlefs, and M. Sanchez del Rio, "Anisotropic elasticity of silicon and its application to the modelling of X-ray optics," Journal of synchrotron radiation, vol. 21, no. 3, pp. 507-517, 2014.
[64]	I. Zubel and M. Kramkowska, "The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions," Sensors and Actuators A: Physical, vol. 93, no. 2, pp. 138-147, 2001.
[65]	B. Ohler, "Practical advice on the determination of cantilever spring constants," Bruker Application Note# AN94, vol. 1, 2007.
[66]	M. S. Kim, J. H. Choi, J. H. Kim, and Y. K. Park, "Accurate determination of spring constant of atomic force microscope cantilevers and comparison with other methods," Measurement, vol. 43, no. 4, pp. 520-526, 2010.
[67]	Bruker Corporation, NanoScope  Software 8.10 User Guide. 2011.
[68]	M. Gad-el-Hak, The MEMES Handbook. Boca Raton London New York Washington, D.C.: CRC PRESS, 2002.
[69]	J. Han, X. Li, H. Bao, G. Zuo, Y. Wang, F. Feng, Z. Yu, and X. Ge, "AFM probes fabricated with masked–maskless combined anisotropic etching and p+ surface doping," Journal of Micromechanics and Microengineering, vol. 16, no. 2, p. 198, 2005.
[70]	P. Pingue, V. Piazza, P. Baschieri, C. Ascoli, C. Menozzi, A. Alessandrini, and P. Facci, "Demonstration of an electrostatic-shielded cantilever," Applied physics letters, vol. 88, no. 4, p. 043510, 2006.
[71]	H. B. Michaelson, "The work function of the elements and its periodicity," Journal of applied physics, vol. 48, no. 11, pp. 4729-4733, 1977.
[72]	D. Saya, K. Fukushima, H. Toshiyoshi, G. Hashiguchi, H. Fujita, and H. Kawakatsu, "Fabrication of single-crystal Si cantilever array," Sensors and actuators A: Physical, vol. 95, no. 2-3, pp. 281-287, 2002.
[73]	林明彥, 張嘉升, 黎文龍, "原子力顯微儀的原理 (上)," 科儀新知, no. 148, pp. 46-57, 2005.
[74]	J. Yang, T. Ono, and M. Esashi, "Mechanical behavior of ultrathin microcantilever," Sensors and Actuators A: Physical, vol. 82, no. 1-3, pp. 102-107, 2000.