| 研究生: |
翁崇寧 Weng, Chung-Ning |
|---|---|
| 論文名稱: |
轉換材料在不同物理與彈性問題之理論及等效行為探討 Transformation media for physical and elastic phenomena and their equivalent effects |
| 指導教授: |
陳東陽
Chen, Tungyang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 轉換材料 、轉換光學 、電磁波隱形斗篷 、異向性材料 、等效行為 |
| 外文關鍵詞: | Transformation media, Transformation optics, Electromagnetic cloak, Anisotropic material, Equivalent effect |
| 相關次數: | 點閱:220 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隱形一直是科幻小說或電影中的熱門題材。直到2006年這個概念不再只是個空想,而是真實的在微波頻段的電磁波中實現了。開啟這扇大門的是Leonhardt 以及 Pendry 這兩組研究團隊,在2006年發表兩篇研究在Science 期刊雜誌上。其中所提到光學隱形斗篷的概念更成為近來非常引人關注與感興趣的研究課題。主要探討電磁波Maxwell方程式與幾何座標轉換之間的結合與應用,透過此方法能設計出適當的材料參數來達到控制電磁波的目的。這個概念逐漸發展成為一個新興的領域-轉換光學(transformation optics),而所對應設計出材料則被稱為轉換材料(transformation media)。轉換材料的理論可以延伸至不同物理現象,本論文將詳細介紹傳導、電磁波與其他彈性問題的推導與應用,並探討其在應力波傳問題中的可行性。本論文亦著重於討論轉換函數的性質與應用,理論上轉換光學的行為是由座標轉換來控制,因此所對應的幾何形狀、材料參數等皆可透過調整轉換函數來進行調整與最佳化設計。在幾何問題上,本文提出了簡易的任意多邊形與特殊幾何曲線的設計方式,並將此設計方式推廣至異向性的背景材料之中。在材料參數設計上,本文推導出在參數簡化後仍符合阻抗匹配條件的高階轉換函數,並將此函數整理成一通用公式,使其能方便延伸到各種形狀轉換材料進行參數調整。最後,本文提出一個理論分析架構,解析多層轉換材料的場量分布,並進一步去探討層狀轉換材料的等效行為,結果證明只要轉換函數連續,層狀轉換材料的等效的行為是決定在邊界條件而非函數本身。
To make objects invisible to human eyes has been long a subject of science fiction. But just in 2006, this imagination has been materialized in the range of microwave radiation. This was attributed two pioneering papers in Science by Leonhardt and Pendry et al. in 2006, in which they proposed an ingenious idea to control electromagnetic waves by a specially designed materials. The general concept that leads to the design of proper materials is now referred to as transformation optics. In this thesis, we present theoretical frameworks for different physical phenomena, including conduction, electromagnetic waves and elastodynamics. Specifically, we are concerned with the study of transformation functions. From the theoretical point of view, the behavior of transformation optics is governed by the function we select, so the geometric configurations and material properties could be refined by adjusting transformation functions. We develop a simple theory form that enable us to design cloaks with arbitrarily complex geometry. In addition, we propose a methodology of cloaking with curvilinearly anisotropic background materials. Also, we propose a unified derivation of the quadratic function for arbitrary geometry. This quadratic function can be applied to design optimal reduced parameters that impedance matching condition is fulfilled at outer boundary. The restriction of transformation medium theory in stress wave propagation is also discussed. Lastly, we present a framework based on a Fourier-Bessel analysis to prove the equivalency of different geometric configurations in transformation optics.
Agrawal, A. and Nahata, A., Terahertz Plasmonics: Metamaterials and Guided-wave Devices (VDM Verlag Dr. Müller, 2009)
Alù, A. and Engheta N., Achieving transparency with plasmonic and metamaterial coatings, Physical Review E 72, 016623 (2005).
Amirkhizia, A. V. and Tehraniana, A. and Nemat-Nasser, S., Stress-wave energy management through material anisotropy, Wave Motion (2010) (in press).
Born, M. and Wolf, E., Principles of Optics, 7th (Expanded) Edition, (Cambridge University Press, New York, 2002).
Brun, M., Guenneau, S. and Movchan, A. B., Achieving control of in-plane elastic waves, Applied Physics Letters 94, 061903 (2009).
Cai, W., Chettiar, U. K., Kildishev, A. V. and Shalaev, V. M., Designs for optical cloaking with high-order transformations, Optics Express 16, 5444-52 (2008).
Cai, W., Chettiar, U. K., Kildishev, A.V., Shalaev, V. M. and Milton, G. W., Nonmagnetic cloak with minimized scattering, Applied Physics Letters 91, 111105 (2007).
Cai, W., Chettiar, U. K., Yuan, H. K., Silva, V. C., Kildishev, A.V., Drachev, V. P. and Shalaev, V. M., Metamagnetics with rainbow colors, Optics Express 15, 3333 (2007).
Caloz, C. and Itoh, T., Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. (Wiley Hoboken, NJ 2006).
Caorsi, S., Pastorino, M. and Raffetto M., Electromagnetic scattering by a multilayer elliptic cylinder under transverse-magnetic illumination: series solution in terms of Mathieu functions, IEEE Transactions on Antennas and Propagation 45(6), 926–935 (1997).
Castaldi, G., Gallina, I., Galdi, V., Alù, A. and Engheta, N., Cloak/anti-cloak interactions, Optics Express 17, 3101–3114 (2009).
Chen, H. and Chan, C. T., Acoustic cloaking in three dimensions using acoustic metamaterials, Applied Physics Letters 91, 183518 (2007).
Chen, H. and Chan, C. T., Transformation media that rotate electromagnetic field, Applied Physics Letters 90, 241105 (2007).
Chen, H., Chan, C. T. and Sheng, P., Transformation optics and metamaterials, Nature Materials 9, 387 (2010).
Chen, H., Luo, X., Ma, H. and Chan, C. T., The anti-cloak, Optics Express 16, 14603–08 (2008).
Chen, H., Wu, B. I., Zhang, B., and Kong, J. A., Electromagnetic wave interactions with a metamaterial cloak, Physical Review Letters 99, 063903 (2007).
Chen, T. and Weng, C. N., Invisibility cloak with a twin cavity, Optics Express 17, 8614 (2009).
Chen, T., Cheng, S. W. and Weng, C. N., Equivalent configurations of optical transformation media, Optics Express 17, 21326-35 (2009).
Chen, T., Kuo, H.-Y.,. Transport properties of composites consisting of periodic arrays of exponentially graded cylinders with cylindrically orthotropic materials, Journal of Applied Physics 98, 033716 (2005).
Chen, T., Weng C. N. and Chen, J. S., Cloak for curvilinearly anisotropic media in conduction, Applied Physics Letters 93, 114103 (2008).
Chen, X., Fu, Y. and Yuan, N., Invisible cloak design with controlled constitutive parameters and arbitrary shaped boundaries through Helmholtz’s equation, Optics Express 17, 3581-3586 (2009).
Cheng, Y,, Yang, F., Xu, J. Y. and Liu, X. J., A multilayer structured acoustic cloak with homogeneous isotropic materials, Applied Physics Letters 92, 151913 (2008).
Chew, C. W. and Weedon, W. H., A 3d perfectly matched medium from modified Maxwell's equations with stretched coordinates, Microwave and Optical Technology Letters 7, 599-604 (1994).
Chew, H. and Kerker, M., Abnormally low electromagnetic scattering cross sections, Journal of the Optical Society of America 66, 445–9 (1976).
Chew, W. C. and Liu, Q. H.. Perfectly matched layers for elastodynamics: A new absorbing boundary condition, Journal of Computational Acoustics 4, 341-359 (1996).
Collino, F. and Tsogka, C., Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics 66, 294-307 (2001).
Cummer, S. A., and Schurig, D., One path to acoustic cloaking, New Journal of Physics 9, 45 (2007).
Cummer, S. A., Popa, B-I., Schurig, D., Smith, D. R., Pendry, J., Rahm, M. and Starr, A., Scattering theory derivation of a 3D Acoustic cloaking shell, Physical Review Letters 100, 024301 (2008).
Dolin, L. S., To the possibility of comparison of three-dimensional electromagnetic systems with nonuniform anisotropic filling, Izvestiya Vysshikh Uchebnykh Zavedeniui. Radiofizika 4, 964–967 (1961).
Engheta, N. and Ziolkowski, R. W., Eds., Metamaterials: Physics and Engineering Explorations (Wiley-IEEE Press, Hoboken, NJ, 2006).
Ergin, T., Stenger, N., Brenner, P., Pendry,J. B. and Wegener, M., Three-Dimensional Invisibility Cloak at Optical Wavelengths, Science 328, 337-339 (2010).
Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X., Ultrasonic metamaterials with negative modulus, Nature Materials 5, 452-56 (2006).
Farhat, M., Guenneau, S., Enoch, S. and Movchan, A. B., Cloaking bending waves propagating in thin elastic plates, Physical Review B 79, 033102 (2009).
Festa, G. and Nielsen, S., PML Absorbing Boundaries, Bulletin of the Seismological Society of America 93(2), 891-903 (2003).
Gabrielli, L. H., Cardenas, J., Poitras C. B. and Lipson, M., Silicon nanostructure cloak operating at optical frequencies, Nature Photonics 8, 461-46 (2009).
Greenleaf, A., Kurylev, Y., Lassas, M. and Uhlmann, G., Approximate Quantum Cloaking and Almost-Trapped States, Physical Review Letters 101, 220404 (2008).
Greenleaf, A., Kurylev, Y., Lassas, M., and Uhlmann, G., Invisibility and Inverse Problems. Bulletin of the American Mathematical Society 46, 55-97 (2009).
Greenleaf, A., Lassas, M. and Uhlmann, G., Anisotropic conductivities that cannot be detected by EIT, Physiol. Meas. 24, 413-419 (2003).
Greenleaf, A., Lassas, M. and Uhlmann, G., On non-uniqueness for Calder´on’s inverse problem, Mathematical Research Letters 10, 685–93 (2003).
Hashin Z and Shtrikman S A variational approach to the theory of the effective magnetic permeability of multiphase materials, Journal of Applied Physics 33, 3125–31 (1962).
Hashin, Z., The elastic moduli of heterogeneous materials, Journal of Applied Physics 29, 143–50 (1962).
Hu, J., Zhou X. and Hu, G., Design method for electromagnetic cloak with arbitrary shapes based on Laplace’s equation, Optics Express 17, 1308-1320 (2009).
Jiang, W. X., Chin, J. Y., Li, Z., Cheng, Q., Liu, R. and Cui, T. J., Analytical design of conformally invisible cloaks for arbitrarily shaped objects, Physical Review E 77, 066607 (2008).
Jiang, W. X., Cui, T. J., Yu, G. X., Lin, X. Q., Cheng, Q. and Chin, J. Y., Arbitrarily elliptical–cylindrical invisible cloaking, Journal of Physics D: Applied Physics 41, 085504 (2008).
Jiang, W. X., Cui, T. J., Zhou, X. Y., Yang, X. M. and Cheng, Q., Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials, Physical Review E 78, 066607 (2008).
Jiang, W. X., Ma, H. F., Cheng, Q and Cui, T. J., Illusion media: Generating virtual objects using realizable metamaterials, Applied Physics Letters 96, 121910 (2010).
Kerker, M., Invisible bodies, Journal of the Optical Society of America 65, 376–9 (1975).
Kildishev, A. V., Cai, W., Chettiar, U. K., Yuan, H. K., Sarychev, A. K., Drachev, V. P. and Shalaev, V. M., Negative Refractive Index in Optics of Metal-Dielectric Composites, Journal of the Optical Society of America B 23, 423-433 (2006).
Kohn, R. V. and Vogelius, M. Inverse problems Proc. Symp. Applied Mathematics of the American Mathematical Society and the Society for Industrial and Applied Mathematics (New York, 12–13 April 1983) ed DW McLaughlin (Providence, RI: American Mathematical Society) 113–23 (1984)
Kong, F., Wu, B. I., Kong, J. A., Huangfu, J., Xi, S. and Chen, H., Planar focusing antenna design by using coordinate transformation technology, Applied Physics Letters 91, 253509-1-3 (2007).
Kundtz, N., Roberts, D.A., Allen, J., Cummer, S. and Smith, D. R., Optical source transformations, Optics Express 16, 21215 (2008).
Kuo, H.-Y., Chen, T., Effective transport properties of arrays of multicoated or graded spheres with spherically transversely isotropic constituents, Journal of Applied Physics 99, 093702 (2006).
Kwon, D. H. and Werner, D. H., Two-dimensional eccentric elliptic electromagnetic cloaks, Applied Physics Letters 92, 013505 (2008).
Kwon, D.H. and Werner, D. H., Restoration of antenna parameters in scattering environments using electromagnetic cloaking, Applied Physics Letters 92, 113507 (2008)
Lai, Y., Chen, H., Zhang, Z. Q. and Chan, C. T., Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell, Physical Review Letters 102, 093901 (2009).
Lai, Y., Ng, J., Chen, H., Han, D., Xiao, J., Zhang, Z. Q. and Chan, C. T., Illusion optics: The optical transformation of an object into another object, Physical Review Letters 102, 253902 (2009).
Lawrence, J. D., A Catalog of Special Plane Curves, (New York: Dover, 1972).
Lax, M. and Nelson, D. F., Maxwell equations in material form, Physical Review B 13, 1777 (1976).
Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z G. and Kim, C. K., Acoustic metamaterial with negative density, Physics Letters A 373, 4464-69 (2009).
Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z G. and Kim, C. K., Acoustic metamaterial with negative modulus, Journal of Physics: Condensed Matter 21, 175704 (2009).
Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z G. and Kim, C. K., Composite acoustic medium with simultaneously negative density and modulus, Physical Review Letters 104, 054301 (2010).
Leonhardt, U. and Philbin, T. G., Transformation optics and the geometry of light, Progress in Optics 53, 70–152 (2009).
Leonhardt, U., Metamaterials: Towards invisibility in the visible, Nature Materials 8, 537 (2009).
Leonhardt, U., Optical conformal mapping, Science 312, 1777–80 (2006).
Li, C. and Li, F., Two-dimensional electromagnetic cloaks with arbitrary geometries, Optics Express 16, 13414-13420 (2008).
Lin D. H. and Luan, P. G., Cloaking of matter waves under the global Aharonov-Bohm effect, Physical Review A 79, 051605 (2009).
Liu, R., Ji, C., Mock, J. J., Chin, J. Y., Cui, T. J. and Smith, D. R., Broadband Ground-Plane Cloak, Science 323, 366-369 (2009).
Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T. and Sheng, P., Locally Resonant Sonic Materials, Science 289, 1734-36 (2000).
Luo, Y. Zhang, J., Hongsheng Chen, Huangfu, J., and Ran. L., High-directivity antenna with small antenna aperture, Applied Physics Letters 95 193506 (2009).
Ma, H., Qu, S., Xu, Z. and Wang, J., Approximation approach of designing practical cloaks with arbitrary shapes, Optics Express 16, 15449-15454 (2008).
MacKenzie J K The elastic constants of a solid containing spherical holes, Proceedings of the Physical Society B 63, 2–11 (1950).
Makimoto, M. and Yamashita, S., Microwave Resonators and Filters Communications: Theory, Design and Applications, (Springer, 2000).
Mansfield, E. H., Neutral holes in plane sheet- reinforced holes which are elastically equivalent to the uncut sheet, Quarterly Journal of Mechanics and Applied Mathematics VI, 370–8 (1953).
Marqués, R., Martín, F. and Sorolla, M., Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications (John Wiley & Sons, New York, 2008)
Mei, Z. L. and Cui, T. J., Arbitrary bending of electromagnetic waves using isotropic materials, Journal of Applied Physics 105, 104913 (2009).
Milton, G. W. and Nicorovici, N. A., On the cloaking effects associated with anomalous localized resonance, Proceedings of the Physical Society A 462, 3027–3059 (2006).
Milton, G. W., Briane, M. and Willis, J. R., On cloaking for elasticity and physical equations with a transformation invariant form, New Journal of Physics 8, 248 (2006).
Milton, G. W., The Theory of Composites (Cambridge University Press, Cambridge, 2002).
Nicolet A, and Zolla F., Cloaking with curved spaces, Science 323, 110-2 (2009).
Nicolet, A. Remacle, J. F., Meys, B., Genon, A. and Legros, W., Transformation methods in computational electromagnetics, Journal of Applied Physics 75, 6036-6038 (1994).
Nicolet, A., Zolla, F. and Guenneau, S., Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section, Optics Letters 33, 1584-1586 (2008).
Nicorovici, N. A., McPhedran, R. C. and Milton, G. W., Optical and dielectric properties of partially resonant composites, Physical Review B 49, 8479–8482 (1994).
Nicorovici, N. A., Milton G. W., McPhedran, R. C. and Botten, L. C., Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance, Optics Express 15, 6314–6323 (2007).
Norris, A., Acoustic cloaking theory, Proceedings of the Royal Society A 464, 2411 (2008).
Pendry, J. B. and Ramakrishna, S. A., Focusing light using negative refraction. Journal of Physics: Condensed Matter 15, 6345–6364 (2003).
Pendry, J. B., All smoke and metamaterials, Nature 460(7255), 579–580 (2009).
Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W. J., Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques 47(11), 2075–1084 (1999).
Pendry, J. B., Holden, A. J., Stewart, W. J. and Youngs. I. Extremely low frequency plasmons in metallic mesostructure, Physical Review Letters 76, 4773–4776 (1996).
Pendry, J. B., Negative refraction makes a perfect lens, Physical Review Letters 85, 3966–69 (2000).
Pendry, J. B., Schurig, D. and Smith, D. R., Controlling electromagnetic fields, Science 312, 1780–2 (2006).
Pendry, J., Taking the wraps off cloaking, Physics 2 95 (2009).
Post, E. J., Formal Structure of Electromagnetics, Chap.6, p.119. (Wiley, New York, 1962)
Rahm, M., Cummer, S. A., Schurig, D., Pendry, J. B. and Smith, D. R., Optical Design of Reflectionless Complex Media by Finite Embedded Coordinate Transformations, Physical Review Letters 100, 063903 (2008).
Rahm, M., Schurig, D., Roberts, D. A., Cummer, S. A., Smith, D. R. and Pendry, J. B., Design of electromagnetic cloaks and concentrators using form-invariant coordinate transfromations of Maxwell’s equations, Photonics and nanostructures - fundamentals and applications 6, 87-95 (2008).
Ramm, A. G., Minimization of the total radiation from an obstacle by a control function on a part of its boundary, Journal of Inverse and Ill-Posed Problems 4, 531–4 (1996)
Remacle, J. F., Nicolet, A., Genon, A. and Legros, W., Comparison of boundary elements and transformed finite elements for open magnetic problems, in Boundary Element Method XVI, C. A. Brebbia, ed., (Computational Mechanics Publications, Southhampton, 1994), pp. 109-116.
Rotman, W., Plasma simulation by artificial dielectrics and parallelplate media, IRE Trans. Antennas Propagat. 82–84 (1962).
Ruan, Z., Yan, M., Neff, C. W. and Qiu, M., Ideal cylindrical cloak: perfect but sensitive to tiny perturbations, Physical Review Letters 99, 113903 (2007).
Sarychev, A. K. and Shalaev, V. M., Electrodynamics of Metamaterials (World Scientific, Singapore, 2007).
Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F. and Smith, D. R., Metamaterial electromagnetic cloak at microwave frequencies, Science 314, 977 (2006).
Schurig, D., Pendry, J. B. and Smith, D. R., Calculation of material properties and ray tracing in transformation media, Optics Express 14, 9794-9804 (2006).
Shelby, R. A., Smith, D. R. and Schultz, S., Experimental verification of a negative index of refraction, Science 292, 77–79 (2001).
Smith, D. R. Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. and Schultz, S., Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters 84, 4184–4187 (2000).
Smith, D. R., and Pendry, J. B., Homogenization of metamaterials by field averaging, Journal of the Optical Society of America B 23, 391–403 (2006).
Solymar L. and Shamonina, E., Waves in Metamaterials, Oxford University Press (2009).
Tachi, S., Telexistence and retro-reflective projection technology, Proceedings of VRIC 5, 69 (2003).
Torrent, D. and Sánchez-Dehesa, J., Acoustic metamaterials for new two dimensional sonic devices, New Journal of Physics 9, 323 (2007).
Torrent, D. and Sánchez-Dehesa, J., Anisotropic mass density by two-dimensional acoustic metamaterials, New Journal of Physics 10, 023004 (2008).
Valentine, J., Li, J., Zentgraf, T., Bartal, G. and Zhang, X., An optical cloak made of dielectrics, Nature Materials 8 568 (2009).
Vasquez, F. G., Milton, G. W. and Onofrei, D., Broadband exterior cloaking, Optics Express 17, 14800-14805 (2009).
Veselago, V. G., About the wording of Fermat’s principle for light propagation in media with negative refraction index, http://arxiv.org/abs/cond-mat/0203451 (2002).
Veselago, V. G., The electrodynamics of substances with simultaneously negative values of and , Soviet Physics Uspekhi 10 509–514 (1968).
Ward A. J. and Pendry J. B., Refraction and geometry in Maxwell's equations, Journal of Modern Optics 43, 773-793. (1996).
Weder, R., Rigorous analysis of high-order electromagnetic invisibility cloaks, Journal of Physics A: Mathematical and Theoretical 41, 065207 (2008).
Wood, B., Metamaterials and invisibility. Comptes Rendus Physique 10(5) 379-390 (2009).
Wu, Q., Zhang, K., Meng, F. Y. and Li, L. W., Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak, Journal of Physics D: Applied Physics 42, 035408 (2009).
Wu, Y., Lai, Y. and Zhang, Z. Q., Effective medium theory for elastic metamaterials in two dimensions, Physical Review B 76, 205313 (2007).
Yan, M., Ruan, Z. and Qiu, M., Cylindrical invisibility cloak with simplified material parameters is inherently visible, Physical Review Letters 99, 233901 (2007).
Yan, M., Ruan, Z. and Qiu, M., Scattering characteristics of simplified cylindrical invisibility cloaks, Optics Express 15, 17772-82 (2007).
Yang, T, Chen, H. Y., Luo, X. D. and Ma, H. R., Superscatterer: Enhancement of scattering with complementary media, Optics Express 16, 18545-50 (2008).
You, Y., Kattawar, G. W. and Yang, P., Invisibility cloaks for toroids, Optics Express 17, 6591-6599 (2009).
You, Y., Kattawar, G. W., Zhai, P. W. and Yang, P., Invisibility cloaks for irregular particles using coordinate transformations, Optics Express 16, 6134-6145 (2008).
Young, E. C., Vector and Tensor Analysis (New York: M. Dekker, 1978)
Yu, G. X., Jiang, W. X. and Cui, T. J., Invisible slab cloaks via embedded optical transformation, Applied Physics Letters 94, 041904 (2009).
Zhang, B., Chen, H. and Wu, B.-I., Limitations of high-order transformation and incident angle on simplified invisibility cloaks, Optics Express 16, 14655-60 (2008).
Zhang, J. Luo, Y., Niels and Mortensen, N. A., Minimizing the scattering of a nonmagnetic cloak, Applied Physics Letters 96, 113511 (2010).
Zhang, J., Luo, Y., Chen, H. and Wu, B. I., Cloak of arbitrary shape, Journal of the Optical Society of America B 25, 1776-1779 (2008).
Zhang, S., Genov, D. A., Sun, C. and Zhang, X., Cloaking of matter waves, Physical Review Letters 100, 123002 (2008)
Zheng, Y. and Huang, X., Anisotropic perfectly matched layers for elastic waves in Cartesian and curvilinear coordinates, Earth Resources Laboratory 2002 Industry Consortium Meeting 1-18 (2002).
Zhou, J., Koschny, T., Kafesaki, M., Economou, E. N., Pendry, J. B. and Soukoulis, C. M., Saturation of the magnetic response of split-ring resonators at optical frequencies, Physical Review Letters 95, 223902 (2005).
Zhou, X. and Hu, G., Analytic model of elastic metamaterials with local resonances, Physical Review B 79, 195109 (2009).